SITE-SPECIFIC EQUATIONS OF STATE FOR COASTAL SEA AREAS AND INLAND WATER BODIES

Author(s):  
Natalia Andrulionis ◽  
Natalia Andrulionis ◽  
Ivan Zavialov ◽  
Ivan Zavialov ◽  
Elena Kovaleva ◽  
...  

This article presents a new method of laboratory density determination and construction equations of state for marine waters with various ionic compositions and salinities was developed. The validation of the method was performed using the Ocean Standard Seawater and the UNESCO thermodynamic equation of state (EOS-80). Density measurements of water samples from the Aral Sea, the Black Sea and the Issyk-Kul Lake were performed using a high-precision laboratory density meter. The obtained results were compared with the density values calculated for the considered water samples by the EOS-80 equation. It was shown that difference in ionic composition between Standard Seawater and the considered water bodies results in significant inaccuracies in determination of water density using the EOS-80 equation. Basing on the laboratory measurements of density under various salinity and temperature values we constructed a new equation of state for the Aral Sea and the Black Sea water samples and estimated errors for their coefficients.

Author(s):  
Natalia Andrulionis ◽  
Natalia Andrulionis ◽  
Ivan Zavialov ◽  
Ivan Zavialov ◽  
Elena Kovaleva ◽  
...  

This article presents a new method of laboratory density determination and construction equations of state for marine waters with various ionic compositions and salinities was developed. The validation of the method was performed using the Ocean Standard Seawater and the UNESCO thermodynamic equation of state (EOS-80). Density measurements of water samples from the Aral Sea, the Black Sea and the Issyk-Kul Lake were performed using a high-precision laboratory density meter. The obtained results were compared with the density values calculated for the considered water samples by the EOS-80 equation. It was shown that difference in ionic composition between Standard Seawater and the considered water bodies results in significant inaccuracies in determination of water density using the EOS-80 equation. Basing on the laboratory measurements of density under various salinity and temperature values we constructed a new equation of state for the Aral Sea and the Black Sea water samples and estimated errors for their coefficients.


Author(s):  
S. Z. Baykara ◽  
E. H. Figen ◽  
A. Kale ◽  
T. N. Veziroglu

Hydrogen sulphide, an acid gas, is generally considered an environmental pollutant. As an industrial byproduct, it is produced mostly during fuel processing. Hydrogen sulphide occurs naturally in many gas wells and also in gas hydrates and gas-saturated sediments especially at the bottom of the Black Sea where 90% of the sea water is anaerobic.The anoxic conditions exist in the deepest parts of the basin since nearly 7300 years, caused by the density stratification following the significant influx of the Mediterranean water through the Bosphorous nearly 9000 years ago. Here, H2S is believed to be produced by sulphur reducing bacteria at an approximate rate of 10 000 tons per day, and it poses a serious threat since it keeps reducing the life in the Black Sea. An oxygen–hydrogen sulphide interface is established at 150–200 m below the surface after which H2S concentration starts increasing regularly until 1000 m, and finally reaches a nearly constant value of 9.5 mg/l around 1500 m depth.Hydrogen sulphide potentially has economic value if both sulphur and hydrogen can be recovered. Several methods are studied for H2S decomposition, including thermal, thermochemical, electrochemical, photochemical and plasmochemical methods.In the present work, H2S potential in the Black Sea is investigated as a source of hydrogen, an evaluation of the developing prominent techniques for hydrogen production from H2S is made, and an engineering assessment is carried out regarding hydrogen production from H2S in the Black Sea using a process design based on the catalytic solar thermolysis approach. Possibility of a modular plant is considered for production at larger scale.


Author(s):  
Elena Kovaleva ◽  
Elena Kovaleva ◽  
Alexander Izhitskiy ◽  
Alexander Izhitskiy ◽  
Alexander Egorov ◽  
...  

Studying of methane formation and distribution in natural waters is important for understanding of biogeochemical processes of carbon cycle, searching for oil and gas sections and evaluation of CH4 emissions for investigations of greenhouse effect. The Black Sea is the largest methane water body on our planet. However, relatively low values of methane concentration (closed to equilibrium with the atmospheric air) are typical of the upper aerobic layer. At the same time, the distribution pattern of CH4 in surface waters of coastal areas is complicated by the influence of coastal biological productivity, continental runoff, bottom sources, hydrodynamic processes and anthropogenic effect. The investigation is focused on the spatial variability of dissolved methane in the surface layer of the sea in coastal regions affected by the continental runoff and anthropogenic pressure. Unique in situ data on methane concentrations were collected along the ship track on 2 sections between Sochi and Gelendzhik (2013, 2014) and 2 sections between Gelendzhik and Feodosia (2015). Overall 170 samples were obtained. Gas-chromatographic analysis of the samples revealed increase of CH4 saturation in the southeastern part of the Crimean shelf and the Kerch Strait area. Such a pattern was apparently caused by the influence of the Azov Sea water spread westward along the Crimean shore from the strait. This work was supported by the Russian Science Foundation, Project 14-50-00095 and the Russian Foundation for Basic Research, Project 16-35-00156 mol_a.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


Author(s):  
Vera Rostovtseva ◽  
Vera Rostovtseva ◽  
Igor Goncharenko ◽  
Igor Goncharenko ◽  
Dmitrii Khlebnikov ◽  
...  

Sea radiance coefficient, defined as the ratio of the sunlight reflected by the water bulk to the sunlight illuminating the water surface, is one of the most informative optical characteristics of the seawater that can be obtained by passive remote sensing. We got the sea radiance coefficient spectra by processing the data obtained in measurements from board a moving ship. Using sea radiance coefficient optical spectra it is possible to estimate water constituents concentration and their distribution over the aquatory of interest. However, thus obtained sea radiance coefficient spectra are strongly affected by weather and measurement conditions and needs some calibration. It was shown that practically all the spectra of sea radiance coefficient have some generic peculiarities regardless of the type of sea waters. These peculiarities can be explained by the spectrum of pure sea water absorption. Taking this into account a new calibration method was developed. The measurements were carried out with the portative spectroradiometers from board a ship in the five different seas: at the north-east coast of the Black Sea, in the Gdansk Bay of the Baltic Sea, in the west part of the Aral Sea, in the Kara Sea with the Ob’ Bay and in the Philippine Sea at the coast of Taiwan. The new method of calibration was applied to the obtained spectra of the sea radiance coefficient that enabled us to get the corresponding absorption spectra and estimate the water constituents concentration in every region. The obtained concentration estimates were compared to the values obtained in water samples taken during the same measurement cycle and available data from other investigations. The revealed peculiarities of the sea radiance coefficient spectra in the aquatories under exploration were compared to the corresponding water content and some characteristic features were discussed.


Author(s):  
Elena Kovaleva ◽  
Elena Kovaleva ◽  
Alexander Izhitskiy ◽  
Alexander Izhitskiy ◽  
Alexander Egorov ◽  
...  

Studying of methane formation and distribution in natural waters is important for understanding of biogeochemical processes of carbon cycle, searching for oil and gas sections and evaluation of CH4 emissions for investigations of greenhouse effect. The Black Sea is the largest methane water body on our planet. However, relatively low values of methane concentration (closed to equilibrium with the atmospheric air) are typical of the upper aerobic layer. At the same time, the distribution pattern of CH4 in surface waters of coastal areas is complicated by the influence of coastal biological productivity, continental runoff, bottom sources, hydrodynamic processes and anthropogenic effect. The investigation is focused on the spatial variability of dissolved methane in the surface layer of the sea in coastal regions affected by the continental runoff and anthropogenic pressure. Unique in situ data on methane concentrations were collected along the ship track on 2 sections between Sochi and Gelendzhik (2013, 2014) and 2 sections between Gelendzhik and Feodosia (2015). Overall 170 samples were obtained. Gas-chromatographic analysis of the samples revealed increase of CH4 saturation in the southeastern part of the Crimean shelf and the Kerch Strait area. Such a pattern was apparently caused by the influence of the Azov Sea water spread westward along the Crimean shore from the strait. This work was supported by the Russian Science Foundation, Project 14-50-00095 and the Russian Foundation for Basic Research, Project 16-35-00156 mol_a.


1995 ◽  
Vol 32 (7) ◽  
pp. 175-181
Author(s):  
Atanas Paskalev ◽  
Galina Dimova

The legislative initiative is an attempt for elaboration of a programme for control of the industrial wastewaters before their discharge into the sewerage. A short review of the existing Bulgarian legislation related to the ecological problems of the Black Sea is presented. The main problems obstructing the practical implementation of the laws and the regulations are analysed. In outlining the approach for control of the industrial discharges, special attention is paid to the necessity of theoretically sound and economically substantiated limits on the discharged wastewaters, extension of the regional authorities' activities on pollution control and involving the municipal Waste Water Treatment Plants (WWTPs) in the wastewater treatment management. The paper gives directions for the future development of a Black Sea Environmental policy, related to industrial indirect discharges at international, state and regional levels.


2017 ◽  
Vol 265 ◽  
pp. 580-586 ◽  
Author(s):  
L.N. Fesenko ◽  
I.V. Pchelnikov ◽  
R.V. Fedotov

A selection of anode coatings has been studied to get sodium hypochlorite in low concentrationduring the electrolysis of 3% solution of sodium salt and the Black Sea water. The corrosive resistance of anodes has been determined, with different batches of ruthenium and iridium oxides, as well as their characteristics: chlorine outlet while passing throughthe current, voltage on the cell, the dynamics of concentration growth of available chlorine in solution.


Sign in / Sign up

Export Citation Format

Share Document