Steady Compressible Navier–Stokes–Fourier Equations with Dirichlet Boundary Condition for the Temperature

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Milan Pokorný
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fucai Li ◽  
Yue Li

<p style='text-indent:20px;'>We study a kinetic-fluid model in a <inline-formula><tex-math id="M1">\begin{document}$ 3D $\end{document}</tex-math></inline-formula> bounded domain. More precisely, this model is a coupling of the Vlasov-Fokker-Planck equation with the local alignment force and the compressible Navier-Stokes equations with nonhomogeneous Dirichlet boundary condition. We prove the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient <inline-formula><tex-math id="M2">\begin{document}$ \gamma&gt; 3/2 $\end{document}</tex-math></inline-formula>) and hence extend the existence result of Choi and Jung [Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, arXiv: 1912.13134v2], where the velocity of the fluid is supplemented with homogeneous Dirichlet boundary condition.</p>


Author(s):  
Young-Pil Choi ◽  
Jinwook Jung

We study an asymptotic analysis of a coupled system of kinetic and fluid equations. More precisely, we deal with the nonlinear Vlasov–Fokker–Planck equation coupled with the compressible isentropic Navier–Stokes system through a drag force in a bounded domain with the specular reflection boundary condition for the kinetic equation and homogeneous Dirichlet boundary condition for the fluid system. We establish a rigorous hydrodynamic limit corresponding to strong noise and local alignment force. The limiting system is a type of two-phase fluid model consisting of the isothermal Euler system and the compressible Navier–Stokes system. Our main strategy relies on the relative entropy argument based on the weak–strong uniqueness principle. For this, we provide a global-in-time existence of weak solutions for the coupled kinetic-fluid system. We also show the existence and uniqueness of strong solutions to the limiting system in a bounded domain with the kinematic boundary condition for the Euler system and Dirichlet boundary condition for the Navier–Stokes system.


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


2014 ◽  
Vol 66 (5) ◽  
pp. 1110-1142
Author(s):  
Dong Li ◽  
Guixiang Xu ◽  
Xiaoyi Zhang

AbstractWe consider the obstacle problem for the Schrödinger evolution in the exterior of the unit ball with Dirichlet boundary condition. Under radial symmetry we compute explicitly the fundamental solution for the linear Dirichlet Schrödinger propagator and give a robust algorithm to prove sharp L1 → L∞ dispersive estimates. We showcase the analysis in dimensions n = 5, 7. As an application, we obtain global well–posedness and scattering for defocusing energy-critical NLS on with Dirichlet boundary condition and radial data in these dimensions.


Sign in / Sign up

Export Citation Format

Share Document