Translation surfaces with non-zero constant mean curvature in Euclidean space

2019 ◽  
Vol 110 (2) ◽  
Author(s):  
Thomas Hasanis
2019 ◽  
Vol 16 (05) ◽  
pp. 1950076 ◽  
Author(s):  
Rafael López ◽  
Željka Milin Šipuš ◽  
Ljiljana Primorac Gajčić ◽  
Ivana Protrka

In this paper, we study harmonic evolutes of [Formula: see text]-scrolls, that is, of ruled surfaces in Lorentz–Minkowski space having no Euclidean counterparts. Contrary to Euclidean space where harmonic evolutes of surfaces are surfaces again, harmonic evolutes of [Formula: see text]-scrolls turn out to be curves. In particular, we show that the harmonic evolute of a [Formula: see text]-scroll of constant mean curvature together with its base curve forms a null Bertrand pair. This allows us to characterize [Formula: see text]-scrolls of constant mean curvature and reconstruct them from a given null curve which is their harmonic evolute.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Rafael López

We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chao Yang ◽  
Jiancheng Liu

In this paper, we show that biharmonic hypersurfaces with at most two distinct principal curvatures in pseudo-Riemannian space form Nsn+1c with constant sectional curvature c and index s have constant mean curvature. Furthermore, we find that such biharmonic hypersurfaces Mr2k−1 in even-dimensional pseudo-Euclidean space Es2k, Ms−12k−1 in even-dimensional de Sitter space Ss2kcc>0, and Ms2k−1 in even-dimensional anti-de Sitter space ℍs2kcc<0 are minimal.


2020 ◽  
Vol 2020 (763) ◽  
pp. 223-249 ◽  
Author(s):  
Martin Traizet

AbstractWe construct constant mean curvature surfaces in euclidean space with genus zero and n ends asymptotic to Delaunay surfaces using the DPW method.


Author(s):  
Alexandre Paiva Barreto ◽  
Francisco Fontenele ◽  
Luiz Hartmann

We prove that there are no regular algebraic hypersurfaces with non-zero constant mean curvature in the Euclidean space $\mathbb {R}^{n+1},\,\;n\geq 2,$ defined by polynomials of odd degree. Also we prove that the hyperspheres and the round cylinders are the only regular algebraic hypersurfaces with non-zero constant mean curvature in $\mathbb {R}^{n+1}, n\geq 2,$ defined by polynomials of degree less than or equal to three. These results give partial answers to a question raised by Barbosa and do Carmo.


2004 ◽  
Vol 76 (4) ◽  
pp. 639-643 ◽  
Author(s):  
Abdênago Barros

In this note we will show that the inverse image under the stereographic projection of a circular torus of revolution in the 3-dimensional euclidean space has constant mean curvature in the unit 3-sphere if and only if their radii are the catet and the hypotenuse of an appropriate right triangle.


Author(s):  
Renzo Caddeo ◽  
Irene I. Onnis ◽  
Paola Piu

AbstractIn this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the three-dimensional Euclidean space $${\mathbb {R}}^3$$ R 3 to the case of helicoidal surfaces in the Bianchi–Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface; then, by making use of this two-parameter representation, we characterize helicoidal surfaces which have constant mean curvature, including the minimal ones.


Sign in / Sign up

Export Citation Format

Share Document