scholarly journals A Response Function Approach for Rapid Far-Field Tsunami Forecasting

2017 ◽  
Vol 174 (8) ◽  
pp. 3249-3273 ◽  
Author(s):  
Elena Tolkova ◽  
Dmitry Nicolsky ◽  
Dailin Wang
Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


Author(s):  
Arend G. Dijkstra ◽  
Yoshitaka Tanimura

By extending the response function approach developed in nonlinear optics, we analytically derive an expression for the non-Markovianity in the time evolution of a system in contact with a quantum mechanical bath, and find a close connection with the directly observable nonlinear optical response. The result indicates that memory in the bath-induced fluctuations rather than in the dissipation causes non-Markovianity. Initial correlations between states of the system and the bath are shown to be essential for a correct understanding of the non-Markovianity. These correlations are included in our treatment through a preparation function.


Sign in / Sign up

Export Citation Format

Share Document