The Number of Spanning Trees in Self-Similar Graphs

2011 ◽  
Vol 15 (2) ◽  
pp. 355-380 ◽  
Author(s):  
Elmar Teufl ◽  
Stephan Wagner
2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Elmar Teufl ◽  
Stephan Wagner

International audience We show that the number of spanning trees in the finite Sierpiński graph of level $n$ is given by $\sqrt[4]{\frac{3}{20}} (\frac{5}{3})^{-n/2} (\sqrt[4]{540})^{3^n}$. The proof proceeds in two steps: First, we show that the number of spanning trees and two further quantities satisfy a $3$-dimensional polynomial recursion using the self-similar structure. Secondly, it turns out, that the dynamical behavior of the recursion is given by a $2$-dimensional polynomial map, whose iterates can be computed explicitly.


2013 ◽  
Vol 392 (12) ◽  
pp. 2803-2806 ◽  
Author(s):  
Francesc Comellas ◽  
Alícia Miralles ◽  
Hongxiao Liu ◽  
Zhongzhi Zhang

2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Elmar Teufl ◽  
Stephan Wagner

Combinatorics International audience We study two graph parameters, namely the number of spanning forests and the number of connected subgraphs, for self-similar graphs with exactly two boundary vertices. In both cases, we determine the general behavior for these and related auxiliary quantities by means of polynomial recurrences and a careful asymptotic analysis. It turns out that the so-called resistance scaling factor of a graph plays an essential role in both instances, a phenomenon that was previously observed for the number of spanning trees. Several explicit examples show that our findings are likely to hold in an even more general setting.


2011 ◽  
Vol 142 (4) ◽  
pp. 879-897 ◽  
Author(s):  
Elmar Teufl ◽  
Stephan Wagner

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Tao Cheng ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib ◽  
Yongtao Li ◽  
Weijun Liu

This paper considers commuting graphs over the semidihedral group SD8n. We compute their eigenvalues and obtain that these commuting graphs are not hyperenergetic for odd n≥15 or even n≥2. We further compute the Laplacian spectrum, the Laplacian energy and the number of spanning trees of the commuting graphs over SD8n. We also discuss vertex connectivity, planarity, and minimum disconnecting sets of these graphs and prove that these commuting graphs are not Hamiltonian.


1998 ◽  
Vol 179 (1-3) ◽  
pp. 155-166 ◽  
Author(s):  
L. Petingi ◽  
F. Boesch ◽  
C. Suffel

Sign in / Sign up

Export Citation Format

Share Document