scholarly journals Modified low regularity well-posedness for the one-dimensional Dirac-Klein-Gordon system

2008 ◽  
Vol 15 (3) ◽  
pp. 279-294 ◽  
Author(s):  
Hartmut Pecher
2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2008 ◽  
Vol 10 (02) ◽  
pp. 181-194 ◽  
Author(s):  
SIGMUND SELBERG ◽  
ACHENEF TESFAHUN

We extend recent results of Machihara and Pecher on low regularity well-posedness of the Dirac–Klein–Gordon (DKG) system in one dimension. Our proof, like that of Pecher, relies on the null structure of DKG, recently completed by D'Ancona, Foschi and Selberg, but we show that in 1d the argument can be simplified by modifying the choice of projections for the Dirac operator. We also show that the result is best possible up to endpoint cases, if one iterates in Bourgain–Klainerman–Machedon spaces.


2007 ◽  
Vol 56 (2) ◽  
pp. 1041
Author(s):  
Li Mi-Shan ◽  
Tian Qiang

2011 ◽  
Vol 84 (3) ◽  
pp. 037001 ◽  
Author(s):  
Abdelmalek Boumali ◽  
Abdelhakim Hafdallah ◽  
Amina Toumi

2020 ◽  
Vol 98 (10) ◽  
pp. 939-943
Author(s):  
Eduardo López ◽  
Clara Rojas

We present a study of the one-dimensional Klein–Gordon equation by a smooth barrier. The scattering solutions are given in terms of the Whittaker Mκ,μ(x) function. The reflection and transmission coefficients are calculated in terms of the energy, the height, and the smoothness of the potential barrier. For any value of the smoothness parameter we observed transmission resonances.


2020 ◽  
Vol 66 (5 Sept-Oct) ◽  
pp. 671
Author(s):  
M. Labidi ◽  
A. Boumali ◽  
A. Ndem Ikot

AbstractIn this paper, we investigated the influence of energy-dependent potentials on the thermodynamic properties of the Klein-Gordon oscillator(KGO): in this way all thermal properties have been determinate via the well-know Euler-Maclaurin method. After this, we extend our study to the case of superstatistical properties of our problem in question. The probability densityf(β)followsχ2− superstatistics (=Tsallis statistics or Gamma distribution). Under the approximation of the low-energy asymptotics of superstatistics, the partition function, at first, has been calculated. This approximation leads to a universal parameterqfor any superstatistics, not only for Tsallis statistics. By using the desired partition function, all thermal properties have been obtained in terms of the parameterq. Also, the influence of the this type of potentials on these properties, via the parameterγ, are well discussed.


2020 ◽  
Vol 34 ◽  
pp. 03011
Author(s):  
Constantin Niţă ◽  
Laurenţiu Emanuel Temereancă

In this article we prove that the heat equation with a memory term on the one-dimensional torus has a unique solution and we study the smoothness properties of this solution. These properties are related with some smoothness assumptions imposed to the initial data of the problem and to the source term.


Sign in / Sign up

Export Citation Format

Share Document