tsallis statistics
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 33)

H-INDEX

31
(FIVE YEARS 3)

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1155-1166
Author(s):  
Luis Augusto Trevisan ◽  
Carlos Mirez ◽  
Djalma Inacio da Silva

In this paper, in the scope of a non-extensive statistical model for the nucleon’s structure function, the volume of the gluons in the nucleons and the relations among the temperature, T, the parameter “q” of Tsallis statistics, and the scattering energies, Q2, are studied. A system of equations with the usual sum rules are solved for the valence quarks, the experimental results for the polarized structure function, and the estimated carried moments for gluons and quarks. Each state of T and q leads to a set of chemical potentials and different radii for gluons and quarks. We conclude that gluons must occupy a larger volume than the quarks to fit the fraction of the total momentum. A linear function of the temperature with Q2 is obtained as an approach. The obtained range of temperatures is different from the previous models.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Giuseppe Gaetano Luciano ◽  
Massimo Blasone

AbstractFlavor mixing of quantum fields was found to be responsible for the breakdown of the thermality of Unruh effect. Recently, this result was revisited in the context of nonextensive Tsallis thermostatistics, showing that the emergent vacuum condensate can still be featured as a thermal-like bath, provided that the underlying statistics is assumed to obey Tsallis prescription. This was analyzed explicitly for bosons. Here we extend this study to Dirac fermions and in particular to neutrinos. Working in the relativistic approximation, we provide an effective description of the modified Unruh spectrum in terms of the q-generalized Tsallis statistics, the q-entropic index being dependent on the mixing parameters $$\sin \theta $$ sin θ and $$\Delta m$$ Δ m . As opposed to bosons, we find $$q>1$$ q > 1 , which is indicative of the subadditivity regime of Tsallis entropy. An intuitive understanding of this result is discussed in relation to the nontrivial entangled structure exhibited by the quantum vacuum for mixed fields, combined with the Pauli exclusion principle.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257855
Author(s):  
Airton Deppman ◽  
Evandro Oliveira Andrade-II

Scale-free networks constitute a fast-developing field that has already provided us with important tools to understand natural and social phenomena. From biological systems to environmental modifications, from quantum fields to high energy collisions, or from the number of contacts one person has, on average, to the flux of vehicles in the streets of urban centres, all these complex, non-linear problems are better understood under the light of the scale-free network’s properties. A few mechanisms have been found to explain the emergence of scale invariance in complex networks, and here we discuss a mechanism based on the way information is locally spread among agents in a scale-free network. We show that the correct description of the information dynamics is given in terms of the q-exponential function, with the power-law behaviour arising in the asymptotic limit. This result shows that the best statistical approach to the information dynamics is given by Tsallis Statistics. We discuss the main properties of the information spreading process in the network and analyse the role and behaviour of some of the parameters as the number of agents increases. The different mechanisms for optimization of the information spread are discussed.


2021 ◽  
pp. 2150152
Author(s):  
Abhisek Saha ◽  
Soma Sanyal

In this paper, we study temperature fluctuations in the initial stages of the relativistic heavy ion collision using a multiphase transport model. We consider the plasma in the initial stages after collision before it has a chance to equilibrate. We have considered [Formula: see text] collision with a center-of-mass energy of 200 GeV. We use the nonextensive Tsallis statistics to find the entropic index in the partonic stages of the relativistic heavy ion collisions. We find that the temperature and the entropic index have a linear relationship during the partonic stages of the heavy ion collision. This has already been observed in the hadronic phase. A detailed analysis of the dependence of the entropic index on the system shows that for increasing spacetime rapidity, the entropic index of the partonic system increases. The entropic index also depends on the beam collision energy. The calculation of the entropic index from the experimental data fitting of the transverse momenta deals with the hadronic phase. However, our study shows that the behavior of the entropic index in the initial nonequilibrium stage of the collision is very similar to the behavior of the entropic index in the hadronic stage.


Author(s):  
Mahfuzur Rahaman ◽  
Trambak Bhattacharyya ◽  
Jan-e Alam

Classical and quantum Tsallis distributions have been widely used in many branches of natural and social sciences. But, the quantum field theory of the Tsallis distributions is relatively a less explored arena. In this paper, we derive the expression for the thermal two-point functions in the Tsallis statistics with the help of the corresponding statistical mechanical formulations. We show that the quantum Tsallis distributions used in the literature appear in the thermal part of the propagator much in the same way the Boltzmann–Gibbs distributions appear in the conventional thermal field theory. As an application of our findings, we calculate the thermal mass in the [Formula: see text] scalar field theory within the realm of the Tsallis statistics.


2021 ◽  
Vol 312-317 ◽  
pp. 166-170
Author(s):  
Airton Deppman ◽  
Eugenio Megías ◽  
Débora P. Menezes
Keyword(s):  

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
M. Hameeda ◽  
B. Pourhassan ◽  
M. C. Rocca ◽  
Aram Bahroz Brzo

AbstractThis paper is an attempt to study the thermodynamics of the structure formation in the large scale universe in the non local gravity using Boltzmann statistics and the Tsallis statistics. The partition function is obtained in both the approaches and the corresponding thermodynamics properties are evaluated. The important thing about the paper is that we surprisingly get the divergence free integrals and thus stress upon the fact that the nonlocal gravity is the singularity free model of gravity.


Sign in / Sign up

Export Citation Format

Share Document