scholarly journals Local boundedness of quasi-minimizers of integral functionals with variable exponent anisotropic growth and applications

2010 ◽  
Vol 17 (5) ◽  
pp. 619-637 ◽  
Author(s):  
Xianling Fan
2009 ◽  
Vol 40 (1) ◽  
pp. 127-138
Author(s):  
Outi Elina Maasalo ◽  
Bianca Stroffolini ◽  
Anna Verde

Author(s):  
Jonas Hirsch ◽  
Mathias Schäffner

We prove local boundedness of local minimizers of scalar integral functionals [Formula: see text], [Formula: see text] where the integrand satisfies [Formula: see text]-growth of the form [Formula: see text] under the optimal relation [Formula: see text].


2020 ◽  
Author(s):  
Yuan Chen ◽  
Haibo Zeng ◽  
Peipei Ma ◽  
Gaoyuan Chen ◽  
Jie Jian ◽  
...  

Stochastics ◽  
2021 ◽  
pp. 1-12
Author(s):  
Yuri Kondratiev ◽  
Yuliya Mishura ◽  
José L. da Silva

Author(s):  
Abderrahim Charkaoui ◽  
Laila Taourirte ◽  
Nour Eddine Alaa

2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


Sign in / Sign up

Export Citation Format

Share Document