local minimizers
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
pp. 1-12
Author(s):  
Krutika Tawri

We give an asymptotic upper bound for the kth twisted eigenvalue of the linearized Allen–Cahn operator in terms of the kth eigenvalue of the Jacobi operator, taken with respect to the minimal surface arising as the asymptotic limit of the zero sets of the Allen–Cahn critical points. We use an argument based on the notion of second inner variation developed in Le (On the second inner variations of Allen–Cahn type energies and applications to local minimizers. J. Math. Pures Appl. (9) 103 (2015) 1317–1345).


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2915
Author(s):  
Jinman Lv ◽  
Zhenhua Peng ◽  
Zhongping Wan

In this paper, we consider a class of mathematical programs with switching constraints (MPSCs) where the objective involves a non-Lipschitz term. Due to the non-Lipschitz continuity of the objective function, the existing constraint qualifications for local Lipschitz MPSCs are invalid to ensure that necessary conditions hold at the local minimizer. Therefore, we propose some MPSC-tailored qualifications which are related to the constraints and the non-Lipschitz term to ensure that local minimizers satisfy the necessary optimality conditions. Moreover, we study the weak, Mordukhovich, Bouligand, strongly (W-, M-, B-, S-) stationay, analyze what qualifications making local minimizers satisfy the (M-, B-, S-) stationay, and discuss the relationship between the given MPSC-tailored qualifications. Finally, an approximation method for solving the non-Lipschitz MPSCs is given, and we show that the accumulation point of the sequence generated by the approximation method satisfies S-stationary under the second-order necessary condition and MPSC Mangasarian-Fromovitz (MF) qualification.


2021 ◽  
Author(s):  
Pengwen Chen

Abstract Phase retrieval can be expressed as a non-convex constrained optimization problem to identify one phase minimizer one a torus. Many iterative transform techniques have been proposed to identify the minimizer, e.g., relaxed averaged alternating reflections(RAAR) algorithms. In this paper, we present one optimization viewpoint on the RAAR algorithm. RAAR algorithm is one alternating direction method of multipliers(ADMM) with one penalty parameter. Pairing with multipliers (dual vectors), phase vectors on the primal space are lifted to higher-dimensional vectors, the RAAR algorithm is one continuation algorithm, which searches for local saddles in the primal-dual space. The dual iteration approximates one gradient ascent flow, which drives the corresponding local minimizers in a positive-definite Hessian region. Altering penalty parameters, the RAAR eliminates the stagnation of these corresponding local minimizers in the primal space and thus screens out many stationary points corresponding to non-local minimizers.


2021 ◽  
Vol Volume 2 (Original research articles) ◽  
Author(s):  
Felix Harder

It is known in the literature that local minimizers of mathematical programs with complementarity constraints (MPCCs) are so-called M-stationary points, if a weak MPCC-tailored Guignard constraint qualification (called MPCC-GCQ) holds. In this paper we present a new elementary proof for this result. Our proof is significantly simpler than existing proofs and does not rely on deeper technical theory such as calculus rules for limiting normal cones. A crucial ingredient is a proof of a (to the best of our knowledge previously open) conjecture, which was formulated in a Diploma thesis by Schinabeck.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giovanni Cupini ◽  
Paolo Marcellini ◽  
Elvira Mascolo ◽  
Antonia Passarelli di Napoli

Abstract We establish the local Lipschitz continuity and the higher differentiability of vector-valued local minimizers of a class of energy integrals of the Calculus of Variations. The main novelty is that we deal with possibly degenerate energy densities with respect to the 𝑥-variable.


Author(s):  
Alain Garaigordobil ◽  
Rubén Ansola ◽  
Igor Fernandez de Bustos

AbstractThis article falls within the scope of topology optimization for Additive Manufacturing processes and proposes an alternative strategy to prevent the phenomenon known as the Dripping Effect. The Dripping Effect is when an overhang constraint is imposed on topology optimization processes for Additive Manufacturing and is defined as the formation of oscillatory contour trends within the prescribed threshold angle. Although these drop-like formations constitute local minimizers of the constraint function, they do not provide a printable feature, and, therefore, they neither eliminate the need to form temporary support structures. So far, there has been no general agreement on how to prevent the Dripping Effect, so this work aims to introduce a strategy that effectively prevents it, and that at the same time may be easy to extrapolate to other types of geometric overhang restrictions. This paper provides a study of the origin of the Dripping Effect and gives detailed instructions on how the proposed prevention strategy is applied. In addition, several benchmark examples where the Dripping Effect is prevented are shown.


Author(s):  
S. Lämmel ◽  
V. Shikhman

AbstractWe study sparsity constrained nonlinear optimization (SCNO) from a topological point of view. Special focus will be on M-stationary points from Burdakov et al. (SIAM J Optim 26:397–425, 2016), also introduced as $$N^C$$ N C -stationary points in Pan et al. (J Oper Res Soc China 3:421–439, 2015). We introduce nondegenerate M-stationary points and define their M-index. We show that all M-stationary points are generically nondegenerate. In particular, the sparsity constraint is active at all local minimizers of a generic SCNO. Some relations to other stationarity concepts, such as S-stationarity, basic feasibility, and CW-minimality, are discussed in detail. By doing so, the issues of instability and degeneracy of points due to different stationarity concepts are highlighted. The concept of M-stationarity allows to adequately describe the global structure of SCNO along the lines of Morse theory. For that, we study topological changes of lower level sets while passing an M-stationary point. As novelty for SCNO, multiple cells of dimension equal to the M-index are needed to be attached. This intriguing fact is in strong contrast with other optimization problems considered before, where just one cell suffices. As a consequence, we derive a Morse relation for SCNO, which relates the numbers of local minimizers and M-stationary points of M-index equal to one. The appearance of such saddle points cannot be thus neglected from the perspective of global optimization. Due to the multiplicity phenomenon in cell-attachment, a saddle point may lead to more than two different local minimizers. We conclude that the relatively involved structure of saddle points is the source of well-known difficulty if solving SCNO to global optimality.


Sign in / Sign up

Export Citation Format

Share Document