Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent

Author(s):  
Zifei Shen ◽  
Fashun Gao ◽  
Minbo Yang
2019 ◽  
Vol 9 (1) ◽  
pp. 803-835 ◽  
Author(s):  
Divya Goel ◽  
Konijeti Sreenadh

Abstract The paper is concerned with the existence and multiplicity of positive solutions of the nonhomogeneous Choquard equation over an annular type bounded domain. Precisely, we consider the following equation $$\begin{array}{} \displaystyle -{\it \Delta} u = \left(\int\limits_{{\it\Omega}}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u+f \; \text{in}\; {\it\Omega},\quad u = 0 \; \text{ on } \partial {\it\Omega} , \end{array}$$ where Ω is a smooth bounded annular domain in ℝN(N ≥ 3), $\begin{array}{} 2^*_{\mu}=\frac{2N-\mu}{N-2} \end{array}$, f ∈ L∞(Ω) and f ≥ 0. We prove the existence of four positive solutions of the above problem using the Lusternik-Schnirelmann theory and varitaional methods, when the inner hole of the annulus is sufficiently small.


Sign in / Sign up

Export Citation Format

Share Document