Sliding Mode Observer-Based Fault Detection of Distributed Networked Control Systems with Time Delay

2011 ◽  
Vol 31 (1) ◽  
pp. 203-222 ◽  
Author(s):  
Qun Zong ◽  
Fanlin Zeng ◽  
Wenjing Liu ◽  
Yuehui Ji ◽  
Yang Tao
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Zhang ◽  
Ming Lyu ◽  
Hamid Reza Karimi ◽  
Yuming Bo

This paper is concerned with the network-based fault detection problem for a class of nonlinear discrete-time networked control systems with multiple communication delays and bounded disturbances. First, a sliding mode based nonlinear discrete observer is proposed. Then the sufficient conditions of sliding motion asymptotical stability are derived by means of the linear matrix inequality (LMI) approach on a designed surface. Then a discrete-time sliding-mode fault observer is designed that is capable of guaranteeing the discrete-time sliding-mode reaching condition of the specified sliding surface. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yan-feng Wang

This paper investigates the robust H∞ fault detection problem for networked control systems with Markov time-delays and data packet loss in both S/C and C/A channels. First, the time-delay from sensor to controller (S/C) and the time-delay from sensor to actuator (C/A) are described by two different Markov chains. Two random variables obeying the Bernoulli distribution are used to describe the packet loss between the sensor and the controller together between the controller and the actuator. Based on this, a fault detection filter is constructed and the closed-loop system mathematical model is established. Then, the solution method of the fault detection filter and controller gain matrix is given. The relationship between the probability of successful packet transmission and the ability to suppress external disturbance is obtained. Finally, simulation verifies the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Pengfei Guo ◽  
Jie Zhang ◽  
Hamid Reza Karimi ◽  
Yurong Liu ◽  
Yunji Wang ◽  
...  

This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to designH∞fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying theH∞performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document