Underdetermined Independent Component Analysis Based on First- and Second-Order Statistics

2018 ◽  
Vol 38 (7) ◽  
pp. 3107-3132 ◽  
Author(s):  
Qiao Su ◽  
Yimin Wei ◽  
Yuehong Shen ◽  
Changliang Deng
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yanfei Jia ◽  
Xiaodong Yang

This paper proposes a two-stage fast convergence adaptive complex-valued independent component analysis based on second-order statistics of complex-valued source signals. The first stage constructs a cost function by extending the real-valued whiten cost function to a complex-valued domain and optimizes the cost function using a complex-valued gradient. The second stage uses the restriction that the pseudocovariance matrix of the separated signal is a diagonal matrix to construct the cost function and the geodesic method is used to optimize the cost function. Compared with other adaptive complex-valued independent component analysis, the proposed method shows a faster convergence rate and smaller error. Computer simulations were performed on synthesized signals and communications signals. The simulation results demonstrate the validity of the proposed algorithm.


2019 ◽  
Vol 7 (3) ◽  
pp. SE19-SE42 ◽  
Author(s):  
David Lubo-Robles ◽  
Kurt J. Marfurt

During the past two decades, the number of volumetric seismic attributes has increased to the point at which interpreters are overwhelmed and cannot analyze all of the information that is available. Principal component analysis (PCA) is one of the best-known multivariate analysis techniques that decompose the input data into second-order statistics by maximizing the variance, thus obtaining mathematically uncorrelated components. Unfortunately, projecting the information in the multiple input data volumes onto an orthogonal basis often mixes rather than separates geologic features of interest. To address this issue, we have implemented and evaluated a relatively new unsupervised multiattribute analysis technique called independent component analysis (ICA), which is based on higher order statistics. We evaluate our algorithm to study the internal architecture of turbiditic channel complexes present in the Moki A sands Formation, Taranaki Basin, New Zealand. We input 12 spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and we plot 3 of the resulting independent components against a red-green-blue color scheme to generate a single volume in which the colored independent components correspond to different seismic facies. The results obtained using ICA proved to be superior to those obtained using PCA. Specifically, ICA provides improved resolution and separates geologic features from noise. Moreover, with ICA, we can geologically analyze the different seismic facies and relate them to sand- and mud-prone seismic facies associated with axial and off-axis deposition and cut-and-fill architectures.


2012 ◽  
Vol 92 (8) ◽  
pp. 1779-1784 ◽  
Author(s):  
V. Zarzoso ◽  
R. Martín-Clemente ◽  
S. Hornillo-Mellado

Sign in / Sign up

Export Citation Format

Share Document