Linkage analysis between the partial restoration (pr) and the restorer-of-fertility (Rf) loci in pepper cytoplasmic male sterility

2008 ◽  
Vol 117 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Jundae Lee ◽  
Jae Bok Yoon ◽  
Hyo Guen Park
2012 ◽  
Author(s):  
◽  
Tiffany Langewisch

Maize S-type cytoplasmic male sterility (CMS-S) is a maternally inherited trait that prevents pollen grains from developing to maturity. CMS-S is associated with the high levels of a novel mitochondrial transcript, orf355/orf77. Cleavage of this RNA, mediated by the nuclear restorer Rf3, reverses the sterility. Rf3 was previously mapped on the long arm of chromosome 2. The goals of this research were to fine-map the locus and to identify Rf3 using a candidate gene approach. Genotyping of nearisogenic lines (NILs) mapped Rf3 to a 1.98 Mb region of 2L. Six candidate genes, all predicted to code for mitochondrially targeted pentatricopeptide repeat proteins (PPR), were PCR-amplified, sequenced, and compared from multiple Rf3-containing NILs and non-restoring rf3 inbreds. One PPR-Rf3 candidate gene had two consistent differences between multiple restoring and non-restoring lines. Gene expression in pre-emergent tassels from the fertility-restored and non-restored plants was compared. Within the 3 Mb region surrounding Rf3, 9 genes were differentially expressed between restoring and non-restoring lines, including genes that could code for an ATP-binding protein, an ATPase, and four PPR proteins. Although Rf3 has not yet been identified, this study has revealed five promising candidates.


2021 ◽  
Author(s):  
Hiroaki Matsuhira ◽  
Kazuyoshi Kitazaki ◽  
Katsunori Matsui ◽  
Keisi Kubota ◽  
Yosuke Kuroda ◽  
...  

Abstract The stability of cytoplasmic male sterility expression in several genetic backgrounds was investigated in sugar beet (Beta vulgaris L.). Nine genetically heterogenous plants from old cultivars were crossed with a cytoplasmic male-sterile line to obtain 266 F1 plants. Based on marker analysis using a multiallelic DNA marker linked to restorer-of-fertility 1 (Rf1), we divided the F1 plants into 15 genotypes. We evaluated the phenotypes of the F1 plants under two environmental conditions: greenhouse rooms with or without daytime heating during the flowering season. Three phenotypic groups appeared: those consistently expressing male sterility (MS), those consistently having restored pollen fertility, and those expressing MS in a thermo-sensitive manner. All plants in the consistently male-sterile group inherited a specific Rf1 marker type named p4. We tested the potential for thermo-induced male-sterile plants to serve as seed parents for hybrid seed production, and three genotypes were selected. Open pollination by a pollen parental line with a dominant trait of red-pigmented hypocotyls and leaf veins resulted in seed setting on thermo-induced male-sterile plants, indicating that their female organs were functional. More than 99.9% of the progeny expressed the red pigmentation trait; hence, highly pure hybrids were obtained. We determined the nucleotide sequences of Rf1 from the three genotypes: one had a novel allele and two had known alleles, of which one was reported to have been selected previously as a nonrestoring allele at a single US breeding station but not at other stations in the US, or in Europe or Japan, suggesting environmental sensitivity.


Genetics ◽  
1982 ◽  
Vol 102 (2) ◽  
pp. 285-295
Author(s):  
H Ahokas

ABSTRACT A new cytoplasmic male sterility in barley (Hordeum vulgare s.l.) is described and designated as msm2. The cytoplasm was derived from a selection of the wild progenitor of barley (H. vulgare ssp. spontaneum). This selection, 79BS14-3, originates from the Southern Coastal Plain of Israel. The selection 79BS14-3 has a normal spike fertility in Finland. When 79BS14-3 was crossed by cv. Adorra, the F1 displayed partial male fertility and progeny of recurrent backcrosses with cv. Adorra were completely male sterile. Evidently 79BS14-3 is a carrier of a recessive or semidominant restorer gene of fertility. The dominant restorer gene Rfm1a for another cytoplasmic male sterility, msm1, is also effective in msm2 cytoplasm. The different partial fertility restoration properties of msm2 and msm1 cause these cytoplasms to be regarded as being distinct. Seventy spontaneum accessions from Israel have been studied for their capacity to produce F1 restoration of male fertility both in msm1 and in msm2 cytoplasms with a cv. Adorra-like seed parent (nuclear gene) background. The msm2 cytoplasm shows partial restoration more commonly than msm1 in these F1 combinations. The mean restoration percentage per accession for msm2 is 28, and for msm1 4. Most of the F1 seed set differences of the two cytoplasms are statistically significant. When estimated with partially restored F1 combinations, msm2 cytoplasm appeared to be about 50 times more sensitive to the male fertility-promoting genes present in the spontaneum accessions. The spontaneum sample from Central and Western Negev, which has been found to be devoid of restoration ability in msm1 cytoplasm, had only low partial restoration ability in msm2 (mean 0.3%). The female fertility of msm2 appears normal. The new msm2 cytoplasm could be useful in producing hybrid barley.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Luyun Ning ◽  
Hao Wang ◽  
Dianrong Li ◽  
Yonghong Li ◽  
Kang Chen ◽  
...  

Abstract Background Cytoplasmic male sterility (CMS) is very important in hybrid breeding. The restorer-of-fertility (Rf) nuclear genes rescue the sterile phenotype. Most of the Rf genes encode pentatricopeptide repeat (PPR) proteins. Results We investigated the restorer-of-fertility-like (RFL) gene family in Brassica napus. A total of 53 BnRFL genes were identified. While most of the BnRFL genes were distributed on 10 of the 19 chromosomes, gene clusters were identified on chromosomes A9 and C8. The number of PPR motifs in the BnRFL proteins varied from 2 to 19, and the majority of BnRFL proteins harbored more than 10 PPR motifs. An interaction network analysis was performed to predict the interacting partners of RFL proteins. Tissue-specific expression and RNA-seq analyses between the restorer line KC01 and the sterile line Shaan2A indicated that BnRFL1, BnRFL5, BnRFL6, BnRFL8, BnRFL11, BnRFL13 and BnRFL42 located in gene clusters on chromosomes A9 and C8 were highly expressed in KC01. Conclusions In the present study, identification and gene expression analysis of RFL gene family in the CMS system were conducted, and seven BnRFL genes were identified as candidates for the restorer genes in Shaan2A CMS. Taken together, this method might provide new insight into the study of Rf genes in other CMS systems.


Rice ◽  
2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Shinya Fujii ◽  
Tomohiko Kazama ◽  
Yukihiro Ito ◽  
Soichi Kojima ◽  
Kinya Toriyama

Sign in / Sign up

Export Citation Format

Share Document