Haploid male fertility and spontaneous chromosome doubling evaluated in a diallel and recurrent selection experiment in maize

2019 ◽  
Vol 132 (8) ◽  
pp. 2273-2284 ◽  
Author(s):  
Willem S. Molenaar ◽  
Wolfgang Schipprack ◽  
Pedro C. Brauner ◽  
Albrecht E. Melchinger
Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 836
Author(s):  
Yanyan Jiao ◽  
Jinlong Li ◽  
Wei Li ◽  
Ming Chen ◽  
Mengran Li ◽  
...  

Chromosome doubling of maize haploids is a bottleneck in the large-scale application of doubled haploid (DH) technology. Spontaneous chromosome doubling (SCD) of haploid has been taken as an important method in the production of DH lines and low haploid male fertility (HMF) is a main limiting factor for the use of SCD. To study its genetic basis, haploids of 119 DH lines derived from a cross between inbred lines Qi319 and Chang7-2 were used to map the quantitative trait locus (QTL) contributing to HMF. Three traits including anther emergence rate (AER), anther emergence score (AES) and pollen production score (PPS) of the haploid population were evaluated at two locations. The heritability of the three traits ranged from 0.70 to 0.81. The QTL contributing to AER, AES and PPS were identified on the chromosomes 1, 2, 3, 4, 5, 7, 9 and 10. Five major QTL, qAER5-1, qAER5-2, qAES3, qPPS1 and qPPS5, were found and each could explain more than 15% of the phenotypic variance at least in one environment. Two major QTL, qPPS1 and qPPS5, and two minor QTL, qAES2 and qAER3, were repeatedly detected at both locations. To increase the application efficiency of HMF in breeding programs, genomic prediction for the three traits were carried out with ridge regression best linear unbiased prediction (rrBLUP) and rrBLUP adding QTL effects (rrBLUP-QTL). The prediction accuracies of rrBLUP-QTL were significantly higher than that by rrBLUP for three traits (p < 0.001), which indirectly indicates these QTL were effective. The prediction accuracies for PPS were 0.604 (rrBLUP) and 0.703 (rrBLUP-QTL) across both locations, which were higher than that of AER and AES. Overall, this study provides important information to understand the genetic architecture of SCD of maize haploids.


Author(s):  
Zhuo Cai ◽  
Guo-Liang Xu ◽  
Ren Jun ◽  
Yu-Xian Dai ◽  
Ming-Yan Yu ◽  
...  

Author(s):  
A.G. Scott ◽  
D.W.R. White

Tissue culture was used in an attempt to obtain a fertile perennial ryegrass x tall fescue hybrid. Regenerated hybrid plants were found to be morphologically variable and contain extensive chromosome rearrangements. Spontaneous chromosome doubling had occurred as well as chromosome elimination. though no fertile hybrid plants have been obtained to date. Keywords: somaclonal variation, Lolium perenne, Festuca arundinacea, intergeneric hybrids


2018 ◽  
Author(s):  
Jiwei Yang ◽  
Haochuan Li ◽  
Yanzhi Qu ◽  
Qiong Chen ◽  
Jihua Tang ◽  
...  

AbstractHaploid genome doubling is a key limiting step of haploid breeding in maize. Spontaneous restoration of haploid male fertility (HMF) provides a method by which costs can be saved and which does not require the use of toxic chemicals, in contrast to the artificial doubling process. To reveal the genetic basis of HMF, haploids were obtained from the offspring of 285 F2:3 families, derived from the cross Zheng58× K22. The F2:3 families were used as female donor and YHI-1 as the male inducer line. The rates of HMF from each family line were evaluated at two field sites over two planting seasons. Quantitative trait loci (QTL) for HMF were identified using a genetic linkage map containing 157 simple sequence repeat (SSR) markers. QTL for HMF displayed incomplete dominance. Transgressive segregation of haploids from F2:3 families was observed relative to haploids derived from the two parents of the mapping population. A total of nine QTL were detected, which were distributed on chromosomes 1, 3, 4, 7, and 8. Three QTL, qHMF3b, qHMF7a, and qHMF7b were detected in both locations, respectively. In our mapping population, HMF was controlled by three major QTL. These QTL could be useful to predict the ability of spontaneous haploid genome doubling in related breeding materials, and to accelerate the haploid breeding process by introgression or aggregation of those QTL.


Crop Science ◽  
2017 ◽  
Vol 57 (2) ◽  
pp. 637-647 ◽  
Author(s):  
Penghao Wu ◽  
Jiaojiao Ren ◽  
Xiaolong Tian ◽  
Thomas Lübberstedt ◽  
Wei Li ◽  
...  
Keyword(s):  

2009 ◽  
Vol 57 (2) ◽  
pp. 155-164 ◽  
Author(s):  
D. Kahrizi ◽  
R. Mohammadi

This research aimed to study the androgenesis and spontaneous chromosome doubling of five barley genotypes using an isolated in vitro microspore culture technique, involving a completely randomized design (CRD) with three replications. Statistical analysis of embryogenesis and cytogenetic results showed that genotype had a significant effect on haploid embryogenesis (P<0.01) and on spontaneous chromosome doubling (P<0.05). The genotype Igri was found to have the highest potential to produce haploid embryos (1577 embryos from 100 anthers), followed by the genotypes Boyer/Rojo, Afzal/Turkman/Kavir, Ashar/Hebo and Agrigashar/Matico with 369, 304, 278 and 150 embryos from 100 anthers, respectively. The highest percentage of spontaneous chromosome doubling (76%) was observed for the genotype which had the lowest embryogenesis (Agrigashar/Matico) and the lowest (65%) for the genotype with the highest androgenic capacity (Igri). Microspore embryogenesis also showed comparatively higher genotypic (109.2) and phenotypic (109.5) coefficients of variation, heritability (99.62) and genetic advance (1206.77), indicating the pre-dominance of additive gene action in the control of this character in the material studied. Estimates of genetic parameters (PCV, GCV and heritability) for microspore embryogenesis were higher than for spontaneous doubled haploids. These results indicated that selection for androgenic capacity would be more effective than for spontaneous doubled haploids. The findings showed a negative relationship (r= −0.68) between embryogenesis and spontaneous chromosome doubling in the barley genotypes studied. All the large embryos used had high regenerability and good plantlet formation.


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1957-1961 ◽  
Author(s):  
Elisabeth M. Meyer ◽  
Darren H. Touchell ◽  
Thomas G. Ranney

Hypericum L. H2003-004-016 is a complex hybrid among Hypericum frondosum Michx., Hypericum galioides Lam., and Hypericum kalmianum L. and exhibits valuable ornamental characteristics, including compact habit, bluish green foliage, and showy flowers. Inducing polyploidy may further enhance the ornamental traits of this hybrid and provide new opportunities for hybridizing with other naturally occurring polyploid Hypericum sp. In this study, in vitro shoot regeneration and treatment of regenerative callus with the dinitroaniline herbicide oryzalin (3,5-dinitro-N4,N4-dipropylsufanilamide) were investigated as a means of inducing allopolyploidy. First, in vitro regeneration was optimized for callus and shoot induction by culture of leaf explants on medium supplemented with benzylamino purine (BA) or meta-topolin (mT) at 5, 10, or 15 μM in combination with indoleacetic acid (IAA) at 0, 1.25, 2.5, or 5 μM. Both BA and mT treatments successfully induced regenerative callus and shoots. Multiple regression analysis estimated maximum regenerative callus (94%) and shoot induction (18 shoots per explant) in medium supplemented with 5 μM BA and 3.75 μM IAA. In the second part of the study, exposure of regenerative callus to oryzalin at 0, 7.5, 15, 30, 60, or 90 μM for durations of 3, 6, or 9 d was investigated for polyploid induction. There was no survival for any of the calli in the 60- or 90-μM oryzalin treatments, but calli subjected to the other treatments exhibited some survival and polyploid induction. Duration had no effect on callus survival or ploidy level, but oryzalin concentration was a significant factor in both. The greatest percentage (44%) of polyploids was induced with 30 μM oryzalin. Spontaneous chromosome doubling was observed in 8% of control explants receiving no oryzalin treatment.


HortScience ◽  
2015 ◽  
Vol 50 (11) ◽  
pp. 1671-1676 ◽  
Author(s):  
Davut Keleş ◽  
Hasan Pınar ◽  
Atilla Ata ◽  
Hatıra Taşkın ◽  
Serhat Yıldız ◽  
...  

The most successful technique used to obtain haploid plant in pepper is anther culture. The chromosome content of haploid plants can be doubled spontaneously or using colchicine. In this study, we compared the rate of spontaneous doubled haploidy of different pepper types. Seven charleston, six bell, eight capia, and seven green pepper genotypes were used as plant material. Murashige and Skoog (MS) nutrient medium with 4 mg·L−1 naphthaleneacetic acid (NAA), 0.5 mg·L−1 6-benzylaminopurine (BAP), 0.25% activated charcoal, 30 g·L−1 sucrose, and 15 mg·L−1 silver nitrate (AgNO3) was used. Ploidy levels of plants obtained through anther culture were detected using both flow cytometry and simple sequence repeats (SSR) markers. The results showed that different spontaneous doubled haploidy rates were obtained from different pepper types. The highest rate was observed in bell pepper type with 53.4% (mean of six genotypes) of haploid plants undergoing spontaneous chromosome doubling. This was followed by charleston and capia types with 31.9% and 30.4% doubling, respectively. Green pepper type gave the lowest spontaneous doubled haploidy rate with 22.2% doubling. The results obtained from this study will be useful both for future work on haploidy in pepper and for breeding programs.


2017 ◽  
Vol 130 (7) ◽  
pp. 1349-1359 ◽  
Author(s):  
Jiaojiao Ren ◽  
Penghao Wu ◽  
Xiaolong Tian ◽  
Thomas Lübberstedt ◽  
Shaojiang Chen

Sign in / Sign up

Export Citation Format

Share Document