scholarly journals Effects of hypoglycaemia on working memory and regional cerebral blood flow in type 1 diabetes: a randomised, crossover trial

Diabetologia ◽  
2017 ◽  
Vol 61 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Michael Gejl ◽  
Albert Gjedde ◽  
Birgitte Brock ◽  
Arne Møller ◽  
Eelco van Duinkerken ◽  
...  
2021 ◽  
Vol 10 (3) ◽  
pp. 480
Author(s):  
Yasuhisa Ano ◽  
Masahiro Kita ◽  
Keiko Kobayashi ◽  
Takashi Koikeda ◽  
Ryuta Kawashima

Epidemiological studies have reported that consumption of dairy products rich in β-lactolin is beneficial for cognitive decline among elderly individuals. Although previous studies have shown that β-lactolin supplementation improves memory function and attention in healthy adults, the mechanism through which β-lactolin affects human brain function has yet to be elucidated. This placebo-controlled randomized double-blind study therefore examined the effects of β-lactolin on human regional cerebral blood flow (rCBF) using near-infrared spectroscopy (NIRS) according to the Consolidated Standards of Reporting Trials guidelines. A total of 114 healthy participants aged between 50 and 75 years with relatively low cognition were randomly allocated into the β-lactolin or placebo groups (n = 57 for both groups) and received supplementation for 6 weeks. After the 6 weeks of supplementation, total hemoglobin during cognitive tasks (Kraepelin and 2-back tasks) was measured using two-channel NIRS to determine rCBF. Accordingly, the β-lactolin group had significantly higher changes in total hemoglobin at the left dorsolateral prefrontal cortex (DLPFC) area measured using the left-side channel during the 2-back tasks (p = 0.027) compared to the placebo group. The present study suggests that β-lactolin supplementation increases rCBF and DLPFC activity during working memory tasks.


2019 ◽  
Vol 40 (4) ◽  
pp. 787-798 ◽  
Author(s):  
Munachiso Nwokolo ◽  
Stephanie A Amiel ◽  
Owen O'Daly ◽  
Megan L Byrne ◽  
Bula M Wilson ◽  
...  

Brain responses to low plasma glucose may be key to understanding the behaviors that prevent severe hypoglycemia in type 1 diabetes. This study investigated the impact of long duration, hypoglycemia aware type 1 diabetes on cerebral blood flow responses to hypoglycemia. Three-dimensional pseudo-continuous arterial spin labeling magnetic resonance imaging was performed in 15 individuals with type 1 diabetes and 15 non-diabetic controls during a two-step hyperinsulinemic glucose clamp. Symptom, hormone, global cerebral blood flow and regional cerebral blood flow responses to hypoglycemia were measured. Epinephrine release during hypoglycemia was attenuated in type 1 diabetes, but symptom score rose comparably in both groups. A rise in global cerebral blood flow did not differ between groups. Regional cerebral blood flow increased in the thalamus and fell in the hippocampus and temporal cortex in both groups. Type 1 diabetes demonstrated lesser anterior cingulate cortex activation; however, this difference did not survive correction for multiple comparisons. Thalamic cerebral blood flow change correlated with autonomic symptoms, and anterior cingulate cortex cerebral blood flow change correlated with epinephrine response across groups. The thalamus may thus be involved in symptom responses to hypoglycemia, independent of epinephrine action, while anterior cingulate cortex activation may be linked to counterregulation. Activation of these regions may have a role in hypoglycemia awareness and avoidance of problematic hypoglycemia.


NeuroImage ◽  
1998 ◽  
Vol 8 (4) ◽  
pp. 409-425 ◽  
Author(s):  
Cheryl L. Grady ◽  
Anthony R. McIntosh ◽  
Fred Bookstein ◽  
Barry Horwitz ◽  
Stanley I. Rapoport ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document