Comparison of the native antimony-bearing Paiting gold deposit, Guizhou Province, China, with Carlin-type gold deposits, Nevada, USA

2016 ◽  
Vol 52 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Zhuo-Jun Xie ◽  
Yong Xia ◽  
Jean S. Cline ◽  
Bao-Wen Yan ◽  
Ze-Peng Wang ◽  
...  
2021 ◽  
Vol 116 (6) ◽  
pp. 1253-1265
Author(s):  
Xiao-Ye Jin ◽  
Jian-Xin Zhao ◽  
Yue-Xing Feng ◽  
Albert H. Hofstra ◽  
Xiao-Dong Deng ◽  
...  

Abstract The ages of Carlin-type gold deposits in the Golden Triangle of South China have long been questioned due to the general lack of minerals unequivocally linked to gold deposition that can be precisely dated using conventional radiogenic isotope techniques. Recent advances in U-Pb methods show that calcite can be used to constrain the ages of hydrothermal processes, but few studies have been applied to ore deposits. Herein, we show that this approach can be used to constrain the timing of hydrothermal activity that generated and overprinted the giant Shuiyindong Carlin-type gold deposit in the Golden Triangle. Three stages of calcite (Cal-1, Cal-2, and Cal-3) have been recognized in this deposit based on crosscutting relationships, cathodoluminescence colors, and chemical (U, Pb, and rare earth element [REE]) and isotope (C, O, Sr) compositions. Cal-1 is texturally associated with ore-stage jasperoid and disseminated Au-bearing arsenian pyrite in hydrothermally altered carbonate rocks, which suggests it is synmineralization. Cal-2 fills open spaces and has a distinct orange cathodoluminescence, suggesting that it precipitated during a second fluid pulse. Cal-1 and Cal-2 have similar carbonate rock-buffered chemical and isotopic compositions. Cal-3 occurs in veins that often contain realgar and/or orpiment and are chemically (low U, Pb, and REE) and isotopically (higher δ13C, lower δ18O and Sri values) distinct from Cal-1 and Cal-2, suggesting that it formed from a third fluid. U-Pb isotope analyses, by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for U-rich Cal-1 and Cal-2 and by LA-multicollector (MC)-ICP-MS for U-poor Cal-3, yield well-defined age constraints of 204.3 to 202.6, 191.9, and 139.3 to 137.1 Ma for Cal-1, Cal-2, and Cal-3, respectively. These new ages suggest that the Shuiyindong gold deposit formed in the late Triassic and was overprinted by hydrothermal events in the early Jurassic and early Cretaceous. Given the association of Cal-3 with orpiment and realgar, and previous geochronologic studies of several other major gold deposits in the Golden Triangle, we infer that the latest stage of calcite may be associated with an early Cretaceous regional gold metallogenic event. Combined with existing isotopic ages in the region, these new ages lead us to propose that Carlin-type gold deposits in the Golden Triangle formed during two metallogenic episodes in extensional settings, associated with the late Triassic Indochina orogeny and early Cretaceous paleo-Pacific plate subduction. This study shows that the calcite U-Pb method can be used to constrain the timing of Carlin-type gold deposits and successive hydrothermal events.


2021 ◽  
Author(s):  
Wei Gao ◽  
Ruizhong Hu ◽  
Albert H. Hofstra ◽  
Qiuli Li ◽  
Jingjing Zhu ◽  
...  

Abstract The Youjiang basin on the southwestern margin of the Yangtze block in southwestern China is the world’s second largest Carlin-type gold province after Nevada, USA. The lack of precise age determinations on gold deposits in this province has hindered understanding of their genesis and relation to the geodynamic setting. Although most Carlin-type gold deposits in the basin are hosted in calcareous sedimentary rocks, ~70% of the ore in the Badu Carlin-type gold deposit is hosted by altered and sulfidized dolerite. Although in most respects Badu is similar to other Carlin-type gold deposits in the province, alteration of the unusual dolerite host produced hydrothermal rutile and monazite that can be dated. Field observations show that gold mineralization is spatially associated with, but temporally later than, dolerite. In situ secondary ion mass spectrometry (SIMS) U-Pb dating on magmatic zircon from the least altered dolerite yielded a robust emplacement age of 212.2 ± 1.9 Ma (2σ, mean square of weighted deviates [MSWD] = 0.55), providing a maximum age constraint on gold mineralization. The U-Th/He ages of detrital zircons from hydrothermally mineralized sedimentary host rocks at Badu and four other Carlin-type gold deposits yielded consistent weighted mean ages of 146 to 130 Ma that record cooling from a temperature over 180° to 200°C and place a lower limit on the age of gold mineralization in the basin. Hydrothermal rutile and monazite that are coeval with gold mineralization have been identified in the mineralized dolerite. Rutile is closely associated with hydrothermal ankerite, sericite, and gold-bearing pyrite. It has high concentrations of W, Fe, V, Cr, and Nb, as well as growth zones that are variably enriched in W, Fe, Nb, and U. Monazite contains primary two-phase fluid inclusions and is intergrown with gold-bearing pyrite and hydrothermal minerals. In situ SIMS U-Pb dating of rutile yielded a Tera-Wasserburg lower intercept age of 141.7 ± 5.8 Ma (2σ, MSWD = 1.04) that is within error of the in situ SIMS Th-Pb age of 143.5 ± 1.4 Ma (2σ, MSWD = 1.5) on monazite. These ages are ~70 m.y. younger than magmatic zircons in the host dolerite and are similar to the aforementioned U-Th/He cooling ages on detrital zircons from hydrothermally mineralized sedimentary host rocks. We, therefore, conclude that the Badu Carlin-type gold deposit formed at ca. 144 Ma. The agreement of the rutile and monazite ages with the U-Th-He cooling ages of Badu and four other Carlin-type gold deposits in the Youjiang basin suggests that ca. 144 Ma is representative of a regional Early Cretaceous Carlin-type hydrothermal event formed during back-arc extension.


2011 ◽  
Vol 71-78 ◽  
pp. 1809-1815
Author(s):  
Si Gen Ma ◽  
Ming Qin He ◽  
Yun Zheng Tang ◽  
Zhen Hua Wang

The altered rock type gold deposit is the one type gold deposits which can form super-large gold deposit. The super-large altered rock type gold deposit has its specialties among the forming time, forming generation, ore-hosted strata, wall rock alteration, area and structure. The southeast Guizhou Province has wonderful minerogenetic conditions. The area has the similar minerogenetic geological setting as many large, super-large altered rock type gold deposits. The characteristics of the altered rock type gold deposits that are distributed in this area have many similarities with other large, super-large altered rock gold deposits. It indicates that the deep of the southeast of Guizhou Province altered rock type gold metallogenic belt has great prospecting potentiality for looking for such type gold deposits from ore-hosted strata, ore-control structure, mineral paragenesis and ore-forming temperature etc.


Sign in / Sign up

Export Citation Format

Share Document