Detections of the Neonicotinoid Insecticide Imidacloprid in Surface Waters of Three Agricultural Regions of California, USA, 2010–2011

2012 ◽  
Vol 88 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Keith Starner ◽  
Kean S. Goh
Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3388
Author(s):  
Josephus F. Borsuah ◽  
Tiffany L. Messer ◽  
Daniel D. Snow ◽  
Steve D. Comfort ◽  
Aaron R. Mittelstet

Neonicotinoids have been the most commonly used insecticides since the early 1990s. Despite their efficacy in improving crop protection and management, these agrochemicals have gained recent attention for their negative impacts on non-target species such as honeybees and aquatic invertebrates. In recent years, neonicotinoids have been detected in rivers and streams across the world. Determining and predicting the exposure potential of neonicotinoids in surface water requires a thorough understanding of their fate and transport mechanisms. Therefore, our objective was to provide a comprehensive review of neonicotinoids with a focus on their fate and transport mechanisms to and within surface waters and their occurrence in waterways throughout the world. A better understanding of fate and transport mechanisms will enable researchers to accurately predict occurrence and persistence of insecticides entering surface waters and potential exposure to non-target organisms in agricultural intensive regions. This review has direct implications on how neonicotinoids are monitored and degraded in aquatic ecosystems. Further, an improved understanding of the fate and transport of neonicotinoids aide natural resource practitioners in the development and implementation of effective best management practices to reduce the potential impact and exposure of neonicotinoids in waterways and aquatic ecosystems.


1985 ◽  
Vol 6 (2) ◽  
pp. 52-58 ◽  
Author(s):  
Susan T. Bagley

AbstractThe genus Klebsiella is seemingly ubiquitous in terms of its habitat associations. Klebsiella is a common opportunistic pathogen for humans and other animals, as well as being resident or transient flora (particularly in the gastrointestinal tract). Other habitats include sewage, drinking water, soils, surface waters, industrial effluents, and vegetation. Until recently, almost all these Klebsiella have been identified as one species, ie, K. pneumoniae. However, phenotypic and genotypic studies have shown that “K. pneumoniae” actually consists of at least four species, all with distinct characteristics and habitats. General habitat associations of Klebsiella species are as follows: K. pneumoniae—humans, animals, sewage, and polluted waters and soils; K. oxytoca—frequent association with most habitats; K. terrigena— unpolluted surface waters and soils, drinking water, and vegetation; K. planticola—sewage, polluted surface waters, soils, and vegetation; and K. ozaenae/K. rhinoscleromatis—infrequently detected (primarily with humans).


Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


Sign in / Sign up

Export Citation Format

Share Document