scholarly journals A semantical proof of the strong normalization theorem for full propositional classical natural deduction

2005 ◽  
Vol 45 (3) ◽  
pp. 357-364 ◽  
Author(s):  
Karim Nour ◽  
Khelifa Saber
1991 ◽  
Vol 56 (1) ◽  
pp. 129-149 ◽  
Author(s):  
Gunnar Stålmarck

In this paper we prove the strong normalization theorem for full first order classical N.D. (natural deduction)—full in the sense that all logical constants are taken as primitive. We also give a syntactic proof of the normal form theorem and (weak) normalization for the same system.The theorem has been stated several times, and some proofs appear in the literature. The first proof occurs in Statman [1], where full first order classical N.D. (with the elimination rules for ∨ and ∃ restricted to atomic conclusions) is embedded in a system for second order (propositional) intuitionistic N.D., for which a strong normalization theorem is proved using strongly impredicative methods.A proof of the normal form theorem and (weak) normalization theorem occurs in Seldin [1] as an extension of a proof of the same theorem for an N.D.-system for the intermediate logic called MH.The proof of the strong normalization theorem presented in this paper is obtained by proving that a certain kind of validity applies to all derivations in the system considered.The notion “validity” is adopted from Prawitz [2], where it is used to prove the strong normalization theorem for a restricted version of first order classical N.D., and is extended to cover the full system. Notions similar to “validity” have been used earlier by Tait (convertability), Girard (réducibilité) and Martin-Löf (computability).In Prawitz [2] the N.D. system is restricted in the sense that ∨ and ∃ are not treated as primitive logical constants, and hence the deductions can only be seen to be “natural” with respect to the other logical constants. To spell it out, the strong normalization theorem for the restricted version of first order classical N.D. together with the well-known results on the definability of the rules for ∨ and ∃ in the restricted system does not imply the normalization theorem for the full system.


2007 ◽  
Vol 5 ◽  
Author(s):  
Tigran M. Galoyan

In this paper we discuss strong normalization for natural deduction in the →∀-fragment of first-order logic. The method of collapsing types is used to transfer the result (concerning strong normalization) from implicational logic to first-order logic. The result is improved by a complement, which states that the length of any reduction sequence of derivation term r in first-order logic is equal to the length of the corresponding reduction sequence of its collapse term rc in implicational logic.


2017 ◽  
Vol 101 (115) ◽  
pp. 75-98
Author(s):  
Mirjana Borisavljevic

The normalization theorem for the system of extended natural deduction will be proved as a consequence of the cut-elimination theorem, by using the connections between the system of extended natural deduction and a standard system of sequents.


2008 ◽  
Vol 14 (2) ◽  
pp. 240-257 ◽  
Author(s):  
Jan von Plato

AbstractGentzen writes in the published version of his doctoral thesis Untersuchungen über das logische Schliessen (Investigations into logical reasoning) that he was able to prove the normalization theorem only for intuitionistic natural deduction, but not for classical. To cover the latter, he developed classical sequent calculus and proved a corresponding theorem, the famous cut elimination result. Its proof was organized so that a cut elimination result for an intuitionistic sequent calculus came out as a special case, namely the one in which the sequents have at most one formula in the right, succedent part. Thus, there was no need for a direct proof of normalization for intuitionistic natural deduction. The only traces of such a proof in the published thesis are some convertibilities, such as when an implication introduction is followed by an implication elimination [1934–35, II.5.13]. It remained to Dag Prawitz in 1965 to work out a proof of normalization. Another, less known proof was given also in 1965 by Andres Raggio.We found in February 2005 an early handwritten version of Gentzen's thesis, with exactly the above title, but with rather different contents: Most remarkably, it contains a detailed proof of normalization for what became the standard system of natural deduction. The manuscript is located in the Paul Bernays collection at the ETH-Zurichwith the signum Hs. 974: 271. Bernays must have gotten it well before the time of his being expelled from Göttingen on the basis of the racial laws in April 1933.


2009 ◽  
Vol 86 (100) ◽  
pp. 27-34
Author(s):  
Mirjana Borisavljevic

Pairs of systems, which consist of a system of sequents and a natural deduction system for some part of intuitionistic logic, are considered. For each of these pairs of systems the property that the normalization theorem is a consequence of the cut-elimination theorem is presented.


2019 ◽  
Vol 170 (1-3) ◽  
pp. 139-176
Author(s):  
Herman Geuvers ◽  
Iris van der Giessen ◽  
Tonny Hurkens

Sign in / Sign up

Export Citation Format

Share Document