scholarly journals A generalized Borel-reducibility counterpart of Shelah’s main gap theorem

2017 ◽  
Vol 56 (3-4) ◽  
pp. 175-185 ◽  
Author(s):  
Tapani Hyttinen ◽  
Vadim Kulikov ◽  
Miguel Moreno
2020 ◽  
Vol 21 (01) ◽  
pp. 2050025
Author(s):  
Francesco Mangraviti ◽  
Luca Motto Ros

Answering one of the main questions of [S.-D. Friedman, T. Hyttinen and V. Kulikov, Generalized descriptive set theory and classification theory, Mem. Amer. Math. Soc. 230(1081) (2014) 80, Chap. 7], we show that there is a tight connection between the depth of a classifiable shallow theory [Formula: see text] and the Borel rank of the isomorphism relation [Formula: see text] on its models of size [Formula: see text], for [Formula: see text] any cardinal satisfying [Formula: see text]. This is achieved by establishing a link between said rank and the [Formula: see text]-Scott height of the [Formula: see text]-sized models of [Formula: see text], and yields to the following descriptive set-theoretical analog of Shelah’s Main Gap Theorem: Given a countable complete first-order theory [Formula: see text], either [Formula: see text] is Borel with a countable Borel rank (i.e. very simple, given that the length of the relevant Borel hierarchy is [Formula: see text]), or it is not Borel at all. The dividing line between the two situations is the same as in Shelah’s theorem, namely that of classifiable shallow theories. We also provide a Borel reducibility version of the above theorem, discuss some limitations to the possible (Borel) complexities of [Formula: see text], and provide a characterization of categoricity of [Formula: see text] in terms of the descriptive set-theoretical complexity of [Formula: see text].


2006 ◽  
Vol 06 (02) ◽  
pp. 233-251 ◽  
Author(s):  
GREG HJORTH ◽  
SIMON THOMAS

We prove that if p ≠ q are distinct primes, then the classification problems for p-local and q-local torsion-free abelian groups of rank two are incomparable with respect to Borel reducibility.


1987 ◽  
Vol 23 (3) ◽  
pp. 565-574 ◽  
Author(s):  
Carlos A. Berenstein ◽  
Daniele C. Struppa
Keyword(s):  

Author(s):  
W. K. Hayman

Suppose thatbelongs to L2( − π, π). If most of the coefficients vanish then f (x) cannot be too small in a certain interval without being small generally. More precisely Ingham ((2), Theorem 1) has proved the followingTHEOREM A. Suppose that f (x) is given by (1·1) and that an = 0, except for a sequence n = nν, where nν+1 − nν ≥ C. Then given ∈ > 0 there exists a constant A (∈), such that we have for any real x1


2017 ◽  
Vol 2019 (14) ◽  
pp. 4431-4468 ◽  
Author(s):  
Christoph Böhm ◽  
Ramiro Lafuente ◽  
Miles Simon

AbstractWe prove uniform curvature estimates for homogeneous Ricci flows: For a solution defined on $[0,t]$ the norm of the curvature tensor at time $t$ is bounded by the maximum of $C(n)/t$ and $C(n)({\mathrm{scal}}(g(t)) - {\mathrm{scal}}(g(0)) )$. This is used to show that solutions with finite extinction time are Type I, immortal solutions are Type III and ancient solutions are Type I, with constants depending only on the dimension $n$. A further consequence is that a non-collapsed homogeneous ancient solution on a compact homogeneous space emerges from a unique Einstein metric on that space. The above curvature estimates follow from a gap theorem for Ricci-flatness on homogeneous spaces. This theorem is proved by contradiction, using a local $W^{2,p}$ convergence result which holds without symmetry assumptions.


2015 ◽  
Vol 40 ◽  
pp. 269-277
Author(s):  
Atreyee Bhattacharya ◽  
Harish Seshadri
Keyword(s):  

2019 ◽  
Vol 108 (2) ◽  
pp. 262-277 ◽  
Author(s):  
ANDREW D. BROOKE-TAYLOR ◽  
SHEILA K. MILLER

We show that the isomorphism problems for left distributive algebras, racks, quandles and kei are as complex as possible in the sense of Borel reducibility. These algebraic structures are important for their connections with the theory of knots, links and braids. In particular, Joyce showed that a quandle can be associated with any knot, and this serves as a complete invariant for tame knots. However, such a classification of tame knots heuristically seemed to be unsatisfactory, due to the apparent difficulty of the quandle isomorphism problem. Our result confirms this view, showing that, from a set-theoretic perspective, classifying tame knots by quandles replaces one problem with (a special case of) a much harder problem.


2020 ◽  
Vol 2020 (763) ◽  
pp. 111-127 ◽  
Author(s):  
Lei Ni ◽  
Yanyan Niu

AbstractIn this paper we prove a gap theorem for Kähler manifolds with nonnegative orthogonal bisectional curvature and nonnegative Ricci curvature, which generalizes an earlier result of the first author [L. Ni, An optimal gap theorem, Invent. Math. 189 2012, 3, 737–761]. We also prove a Liouville theorem for plurisubharmonic functions on such a manifold, which generalizes a previous result of L.-F. Tam and the first author [L. Ni and L.-F. Tam, Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Differential Geom. 64 2003, 3, 457–524] and complements a recent result of Liu [G. Liu, Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds, Duke Math. J. 165 2016, 15, 2899–2919].


1948 ◽  
Vol 63 (2) ◽  
pp. 235-235 ◽  
Author(s):  
M. Kac ◽  
R. Salem ◽  
A. Zygmund
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document