scholarly journals A descriptive Main Gap Theorem

2020 ◽  
Vol 21 (01) ◽  
pp. 2050025
Author(s):  
Francesco Mangraviti ◽  
Luca Motto Ros

Answering one of the main questions of [S.-D. Friedman, T. Hyttinen and V. Kulikov, Generalized descriptive set theory and classification theory, Mem. Amer. Math. Soc. 230(1081) (2014) 80, Chap. 7], we show that there is a tight connection between the depth of a classifiable shallow theory [Formula: see text] and the Borel rank of the isomorphism relation [Formula: see text] on its models of size [Formula: see text], for [Formula: see text] any cardinal satisfying [Formula: see text]. This is achieved by establishing a link between said rank and the [Formula: see text]-Scott height of the [Formula: see text]-sized models of [Formula: see text], and yields to the following descriptive set-theoretical analog of Shelah’s Main Gap Theorem: Given a countable complete first-order theory [Formula: see text], either [Formula: see text] is Borel with a countable Borel rank (i.e. very simple, given that the length of the relevant Borel hierarchy is [Formula: see text]), or it is not Borel at all. The dividing line between the two situations is the same as in Shelah’s theorem, namely that of classifiable shallow theories. We also provide a Borel reducibility version of the above theorem, discuss some limitations to the possible (Borel) complexities of [Formula: see text], and provide a characterization of categoricity of [Formula: see text] in terms of the descriptive set-theoretical complexity of [Formula: see text].

2015 ◽  
Vol 80 (2) ◽  
pp. 433-449 ◽  
Author(s):  
KEVIN WOODS

AbstractPresburger arithmetic is the first-order theory of the natural numbers with addition (but no multiplication). We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, ifp= (p1, . . . ,pn) are a subset of the free variables in a Presburger formula, we can define a counting functiong(p) to be the number of solutions to the formula, for a givenp. We show that every counting function obtained in this way may be represented as, equivalently, either a piecewise quasi-polynomial or a rational generating function. Finally, we translate known computational complexity results into this setting and discuss open directions.


2011 ◽  
Vol 22 (07) ◽  
pp. 1549-1563 ◽  
Author(s):  
MICHEL RIGO ◽  
LAURENT WAXWEILER

The ring of integers and the ring of polynomials over a finite field share a lot of properties. Using a bounded number of polynomial coefficients, any polynomial can be decomposed as a linear combination of powers of a non-constant polynomial P playing the role of the base of the numeration. Having in mind the theorem of Cobham from 1969 about recognizable sets of integers, it is natural to study P-recognizable sets of polynomials. Based on the results obtained in the Ph.D. thesis of the second author, we study the logical characterization of such sets and related properties like decidability of the corresponding first-order theory.


1999 ◽  
Vol 5 (3) ◽  
pp. 289-302 ◽  
Author(s):  
Gabriel Uzquiano

In [12], Ernst Zermelo described a succession of models for the axioms of set theory as initial segments of a cumulative hierarchy of levels UαVα. The recursive definition of the Vα's is:Thus, a little reflection on the axioms of Zermelo-Fraenkel set theory (ZF) shows that Vω, the first transfinite level of the hierarchy, is a model of all the axioms of ZF with the exception of the axiom of infinity. And, in general, one finds that if κ is a strongly inaccessible ordinal, then Vκ is a model of all of the axioms of ZF. (For all these models, we take ∈ to be the standard element-set relation restricted to the members of the domain.) Doubtless, when cast as a first-order theory, ZF does not characterize the structures 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal, by the Löwenheim-Skolem theorem. Still, one of the main achievements of [12] consisted in establishing that a characterization of these models can be attained when one ventures into second-order logic. For let second-order ZF be, as usual, the theory that results from ZF when the axiom schema of replacement is replaced by its second-order universal closure. Then, it is a remarkable result due to Zermelo that second-order ZF can only be satisfied in models of the form 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal.


2018 ◽  
Vol 52 (2) ◽  
pp. 139-159 ◽  
Author(s):  
Alfred Dolich ◽  
John Goodrick

We characterize all ordered Abelian groups whose first-order theory in the language {+, <, 0} is strongly dependent. The main result of this note was obtained independently by Halevi and Hasson [7] and Farré [5].


2003 ◽  
Vol 68 (2) ◽  
pp. 580-588
Author(s):  
Sy D. Friedman ◽  
Tapani Hyttinen ◽  
Mika Rautila

AbstractWe characterize the classifiability of a countable first-order theory T in terms of the solvability (in the sense of [2]) of the potential-isomorphism problem for models of T.


2017 ◽  
Vol 82 (1) ◽  
pp. 35-61 ◽  
Author(s):  
ALLEN GEHRET

AbstractThe derivation on the differential-valued field Tlog of logarithmic transseries induces on its value group ${{\rm{\Gamma }}_{{\rm{log}}}}$ a certain map ψ. The structure ${\rm{\Gamma }} = \left( {{{\rm{\Gamma }}_{{\rm{log}}}},\psi } \right)$ is a divisible asymptotic couple. In [7] we began a study of the first-order theory of $\left( {{{\rm{\Gamma }}_{{\rm{log}}}},\psi } \right)$ where, among other things, we proved that the theory $T_{{\rm{log}}} = Th\left( {{\rm{\Gamma }}_{{\rm{log}}} ,\psi } \right)$ has a universal axiomatization, is model complete and admits elimination of quantifiers (QE) in a natural first-order language. In that paper we posed the question whether Tlog has NIP (i.e., the Non-Independence Property). In this paper, we answer that question in the affirmative: Tlog does have NIP. Our method of proof relies on a complete survey of the 1-types of Tlog, which, in the presence of QE, is equivalent to a characterization of all simple extensions ${\rm{\Gamma }}\left\langle \alpha \right\rangle$ of ${\rm{\Gamma }}$. We also show that Tlog does not have the Steinitz exchange property and we weigh in on the relationship between models of Tlog and the so-called precontraction groups of [9].


2019 ◽  
Vol 19 (01) ◽  
pp. 1950005
Author(s):  
Uri Andrews ◽  
Isaac Goldbring ◽  
H. Jerome Keisler

The randomization of a complete first-order theory [Formula: see text] is the complete continuous theory [Formula: see text] with two sorts, a sort for random elements of models of [Formula: see text] and a sort for events in an underlying atomless probability space. We study independence relations and related ternary relations on the randomization of [Formula: see text]. We show that if [Formula: see text] has the exchange property and [Formula: see text], then [Formula: see text] has a strict independence relation in the home sort, and hence is real rosy. In particular, if [Formula: see text] is o-minimal, then [Formula: see text] is real rosy.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750001 ◽  
Author(s):  
Itay Kaplan ◽  
Saharon Shelah ◽  
Pierre Simon

A theory [Formula: see text] is said to have exact saturation at a singular cardinal [Formula: see text] if it has a [Formula: see text]-saturated model which is not [Formula: see text]-saturated. We show, under some set-theoretic assumptions, that any simple theory has exact saturation. Also, an NIP theory has exact saturation if and only if it is not distal. This gives a new characterization of distality.


Sign in / Sign up

Export Citation Format

Share Document