scholarly journals Correction to: Enhanced Morris method for global sensitivity analysis: good proxy of Sobol’ index published in SAMO, Vol. 59, pp. 373-387, 2019

2020 ◽  
Vol 62 (6) ◽  
pp. 3539-3540
Author(s):  
Kaixuan Feng ◽  
Zhenzhou Lu ◽  
Caiqiong Yang
Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Yuan Wang ◽  
Jie Ren ◽  
Shaobin Hu ◽  
Di Feng

Salt precipitation is generated near the injection well when dry supercritical carbon dioxide (scCO2) is injected into saline aquifers, and it can seriously impair the CO2 injectivity of the well. We used solid saturation (Ss) to map CO2 injectivity. Ss was used as the response variable for the sensitivity analysis, and the input variables included the CO2 injection rate (QCO2), salinity of the aquifer (XNaCl), empirical parameter m, air entry pressure (P0), maximum capillary pressure (Pmax), and liquid residual saturation (Splr and Sclr). Global sensitivity analysis methods, namely, the Morris method and Sobol method, were used. A significant increase in Ss was observed near the injection well, and the results of the two methods were similar: XNaCl had the greatest effect on Ss; the effect of P0 and Pmax on Ss was negligible. On the other hand, with these two methods, QCO2 had various effects on Ss: QCO2 had a large effect on Ss in the Morris method, but it had little effect on Ss in the Sobol method. We also found that a low QCO2 had a profound effect on Ss but that a high QCO2 had almost no effect on the Ss value.


2017 ◽  
Author(s):  
Christopher J. Skinner ◽  
Tom J. Coulthard ◽  
Wolfgang Schwanghart ◽  
Marco J. Van De Wiel ◽  
Greg Hancock

Abstract. Landscape Evolution Models have a long history of use as exploratory models, providing greater understanding of the role large scale processes have on the long-term development of the Earth’s surface. As computational power has advanced so has the development and sophistication of these models. This has seen them applied at increasingly smaller scale and shorter-term simulations at greater detail. However, this has not gone hand-in-hand with more rigorous verifications that are commonplace in the applications of other types of environmental models- for example Sensitivity Analyses. This can be attributed to a paucity of data and methods available in order to calibrate, validate and verify the models, and also to the extra complexity Landscape Evolution Models represent – without these it is not possible to produce a reliable Objective Function against which model performance can be judged. To overcome this deficiency, we present a set of Model Functions – each representing an aspect of model behaviour – and use these to assess the relative sensitivity of a Landscape Evolution Model (CAESAR-Lisflood) to a large set of parameters via a global Sensitivity Analysis using the Morris Method. This novel combination of behavioural Model Functions and the Morris Method provides insight into which parameters are the greatest source of uncertainty in the model, and which have the greatest influence over different model behaviours. The method was repeated over two different catchments, showing that across both catchments and across most model behaviours the choice of Sediment Transport formula was the dominate source of uncertainty in the CAESAR-Lisflood model, although there were some differences between the two catchments. Crucially, different parameters influenced the model behaviours in different ways, with Model Functions related to internal geomorphic changes responding in different ways to those related to sediment yields from the catchment outlet. This method of behavioural sensitivity analysis provides a useful method of assessing the performance of Landscape Evolution Models in the absence of data and methods for an Objective Function approach.


Sign in / Sign up

Export Citation Format

Share Document