scholarly journals Continuum sensitivity and design optimization of superconducting systems under critical current densities with magnetic field dependence

Author(s):  
Kyungsik Seo ◽  
Tim Coombs ◽  
Il Han Park

AbstractThis paper presents an approach for deriving the continuum sensitivity of superconducting systems operating at critical current densities and an optimization method based on the continuum sensitivity. In the sensitivity problem, the superconducting systems is represented by a variational state equation, wherein the magnetic permeability depends on the magnetic field, which is transformed from a state equation with a field-dependent source. The design sensitivity is derived using the material derivative concept of continuum mechanics and the adjoint variable method. The adjoint system has a material property represented as a symmetric tensor that contains the sensitivity of the current density with respect to the magnetic field. The design sensitivity is represented in the analytical form of a surface integral on the interface between the superconducting material and its surroundings, which depends on the sensitivity of the current density. The optimization scheme is constructed based on the continuum design sensitivity. In the design optimization, the level set method is used to express the shape variation of the superconducting materials. The numerical example of infinite solenoids demonstrates that the design sensitivity provides an accurate design solution considering the critical current condition. In addition, the design example of a magnetic resonance imaging solenoid shows that the derived design sensitivity has the inherent ability for attaining the compact design by treating the input current of a superconducting system as a critical condition.

1989 ◽  
Vol 169 ◽  
Author(s):  
Shunji Nomura ◽  
Yutaka Yamada ◽  
Tomohisa Yamashita ◽  
Eriko Yoneda ◽  
Hisashi Yoshino ◽  
...  

AbstractCritical current densities and upper critical fields were measured for a single crystal of the high Tc oxide superconductor, Bi2Sr2CaCu2O8+d, within the ab basal plane and along the c axis. The anisotropy in critical current densities was observed to be Jc⊥/Jc//=10 in agreement with the anisotropy in resistivity for the normal state. The magnetic field dependence of the critical current densities can be interpreted by the anisotropy in the upper critical fields. The scaling of the critical current density with the magnetic field was found. The critical current density scaled to zero at fields Bc2 in the ab plane and along the c axis which were in good agreement with the upper critical fields measured by transport.The anisotropy in flux pinning force density along the b axis, Fp//b, and along the a axis, Fp//a, was found to be Fp//b/Fp//a=3. The data provided strong evidence for flux pinning by the modulated structure in this system.


1992 ◽  
Vol 170 (2) ◽  
pp. 549-562 ◽  
Author(s):  
D. Glatzer ◽  
A. Forkl ◽  
H. Theuss ◽  
H. U. Habermeier ◽  
H. Kronmüller

1992 ◽  
Vol 46 (17) ◽  
pp. 10986-10996 ◽  
Author(s):  
L. M. Fisher ◽  
V. S. Gorbachev ◽  
N. V. Il’in ◽  
N. M. Makarov ◽  
I. F. Voloshin ◽  
...  

1994 ◽  
pp. 559-562
Author(s):  
Yuko Yokoyama ◽  
Tomoya Kubo ◽  
Yoshihiko Nakagawa ◽  
Masaithi Umeda ◽  
Yoshishige Suzuki ◽  
...  

1989 ◽  
Vol 03 (06) ◽  
pp. 505-508
Author(s):  
L.Z. CAO ◽  
Y. YUE ◽  
J. WANG ◽  
S.D. MAO ◽  
H.B. LIU ◽  
...  

The low critical field H c1 is determined by a.c.χ versus H and M versus H. For a sample of BiSrCaCuO with T c (0)=89 K , H c1 is equal to 17.5 Oe at 77 K. Measurement of the critical current Jc under low magnetic field shows that there is a peak on J c -H curve at about 1 Oe due to the existence of the earth’s magnetic field and the current density is very small in the BiSrCaCuO system and J c is nearly zero when the magnetic field reaches 150 Oe. It is suggested that the pinning force is very weak in this material.


Sign in / Sign up

Export Citation Format

Share Document