Electroelastic field for a blunt crack in an anisotropic piezoelectric material

Author(s):  
Xu Wang ◽  
Peter Schiavone
2004 ◽  
Vol 71 (6) ◽  
pp. 866-878 ◽  
Author(s):  
Xian-Fang Li ◽  
Kang Yong Lee

Previous studies assumed that a crack is either impermeable or permeable, which are actually two limiting cases of a dielectric crack. This paper considers the electroelastic problem of a three-dimensional transversely isotropic piezoelectric material with a penny-shaped dielectric crack perpendicular to the poling axis. Using electric boundary conditions controlled by the boundaries of an opening crack, the electric displacements at the crack surfaces are determined. The Hankel transform technique is employed to reduce the considered problem to dual integral equations. By solving resulting equations, the results are presented for the case of remote uniform loading, and explicit expressions for the electroelastic field at any point in the entire piezoelectric body are given in terms of elementary functions. Moreover, the distribution of asymptotic field around the crack front and field intensity factors are determined. Numerical results for a cracked PZT-5H ceramic are evaluated to examine the influence of the dielectric permittivity of the crack interior on the field intensity factors, indicating that the electric boundary conditions at the crack surfaces play an important role in determining electroelastic field induced by a crack, and that the results are overestimated for an impermeable crack, and underestimated for a permeable crack.


2014 ◽  
Vol 891-892 ◽  
pp. 1742-1748
Author(s):  
Hao Peng Song ◽  
Cun Fa Gao

The problem of a piezoelectric screw dislocation emitted from a blunt crack is dealt with in this paper. For an arbitrary distribution of the residual dislocation, the series-form solutions are derived. The results show that the force acting on the dislocation decreases with the value of the dielectric constant within the crack increasing. And the increase of the dielectric constant within the crack helps dislocation emission effectively.


2017 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Yadav Praveen Kumar ◽  
Kushwaha Yogita ◽  
◽  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Kainan Xiong ◽  
Sheng wang ◽  
Xiaoniu Tu ◽  
Zhen-Yong Man ◽  
Yanqing Zheng ◽  
...  

Ca3TaGa3Si2O14 (CTGS) crystal is an excellent high temperature piezoelectric material. 4~6 inches CTGS crystals were successfully grown by Czochralski method. The (110), (100) and (001) faces were strongly exposed, respectively....


Sign in / Sign up

Export Citation Format

Share Document