Process modeling and toolpath optimization for five-axis ball-end milling based on tool motion analysis

2011 ◽  
Vol 57 (9-12) ◽  
pp. 905-916 ◽  
Author(s):  
Liqiang Zhang
Author(s):  
Guo Dongming ◽  
Ren Fei ◽  
Sun Yuwen

The prediction of five-axis ball-end milling forces is quite a challenge due to difficulties of determining the underformed chip thickness and engaged cutting edge. To solve these concerns, this paper presents a new mechanistic model of cutting forces based on tool motion analysis. In the model, for undeformed chip thickness determination, an analytical model is first established to describe the sweep surface of cutting edge during the five-axis ball-end milling process of curved geometries. The undeformed chip thickness is then calculated according to the real kinematic trajectory of cutting edges under continuous change of the cutter axis orientation. A Z-map method is used to verify the engaged cutting edge and cutting coefficients are subsequently calibrated. The mechanistic method is applied to predict the cutting force. Validation tests are conducted under different cutter postures and cutting conditions. The comparison between predicted and measured values demonstrates the applicability of the proposed prediction model of cutting forces.


Author(s):  
Y-H Jung ◽  
B-S So ◽  
K Lee ◽  
S-M Hwang

The generation of a volume swept by a tool along its path, called the swept volume, is indispensable for the volumetric simulation of five-axis machining. In some cases of five-axis machining, the swept volume may be self-intersecting, which requires special processing to handle the geometric and topological problems due to complex tool motion. In this work, an algorithm is proposed for generating the swept volume, including the self-intersection case for five-axis ball-end milling, based on triangle strip representation. The proposed algorithm has various applications such as interference detection in assembly design, and visualization of manipulator motions in robotics.


Author(s):  
Tao Huang ◽  
Xiao-Ming Zhang ◽  
Jürgen Leopold ◽  
Han Ding

In five-axis milling process, the tool path generated by a commercial software seldom takes the dynamics of the machining process into account. The neglect of process dynamics may lead to milling chatter, which causes overcut, quick tool wear, etc., and thus damages workpiece surface and shortens tool life. This motivates us to consider dynamic constraints in the tool path generation. Tool orientation variations in five-axis ball-end milling influence chatter stability and surface location error (SLE) due to the varying tool-workpiece immersion area and cutting force, which inversely provides us a feasible and flexible way to suppress chatter and SLE. However, tool orientations adjustment for suppression of chatter and SLE may cause drastic changes of the tool orientations and affects surface quality. The challenge is to strike a balance between the smooth tool orientations and suppression of chatter and SLE. To overcome the challenge, this paper presents a minimax optimization approach for planning tool orientations. The optimization objective is to obtain smooth tool orientations, by minimizing the maximum variation of the rotational angles between adjacent cutter locations, with constraints of chatter-free and SLE threshold. A dedicated designed ball-end milling experiment is conducted to validate the proposed approach. The work provides new insight into the tool path generation for ball-end milling of sculpture surface; also it would be helpful to decision-making for process parameters optimization in practical complex parts milling operations at shop floor.


2009 ◽  
Vol 69-70 ◽  
pp. 471-475 ◽  
Author(s):  
Shi Guo Han ◽  
Jun Zhao ◽  
Xiao Feng Zhang

In five-axis high speed milling of freeform surface with ball-end cutters, unwanted machining results are usually introduced by some error effects. Hence precise modeling and simulation of milled sculptured surfaces topography and roughness is the key to obtain optimal process parameters, satisfactory surface quality and high machining efficiency. In this paper, a predictive model for sculptured surface topography and roughness of ball-end milling is developed. Firstly, a mathematical model including both the relative motion of the cutter-workpiece couple and some influential factors on machined surface quality such as the tool runout, tool deflection and tool wear is proposed, and subsequently the analytical form of the tool swept envelope is derived by means of homogeneous coordinate transformation. Then the minimal z-values of the corresponding points lied in discrete cutting edges model and Z-map workpiece model are used to update the workpiece surface topography and to calculate 3D surface roughness. Finally, the simulation algorithm is realized with Matlab software. A series of machining tests on 3Cr2MoNi steel are conducted to validate the model, and the machined surface topography is found in good accordance with the simulation result.


2011 ◽  
Vol 223 ◽  
pp. 701-712 ◽  
Author(s):  
Yaman Boz ◽  
Huseyin Erdim ◽  
Ismail Lazoglu

5-axis ball-end milling processes are used in various industries such as aerospace, automotive, die-mold and biomedical industries. 5-axis machining provides reduced cycle times and more accurate machining via reduction in machining setups, use of shorter tools due to improved tool accessibility. However, desired machining productivity and precision can be obtained by physical modeling of machining processes via appropriate selection of process parameters. In response to this gap in the industry this paper presents a cutting force model for 5-axis ball-end milling cutting force prediction. Cutter-workpiece engagement is extracted via developed solid modeler based engagement model. Simultaneous 5-axis milling tests are conducted on Al7075 workpiece material with a carbide cutting tool. Validation of the proposed model is performed for impeller hub roughing toolpaths. Validation test proves that presented model is computationally efficient and cutting forces can be predicted reasonably well. The result of validation test and detailed comparison with the simulation are also presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document