An Approach to Modeling Cutting Forces in Five-Axis Ball-End Milling of Curved Geometries Based on Tool Motion Analysis

Author(s):  
Guo Dongming ◽  
Ren Fei ◽  
Sun Yuwen

The prediction of five-axis ball-end milling forces is quite a challenge due to difficulties of determining the underformed chip thickness and engaged cutting edge. To solve these concerns, this paper presents a new mechanistic model of cutting forces based on tool motion analysis. In the model, for undeformed chip thickness determination, an analytical model is first established to describe the sweep surface of cutting edge during the five-axis ball-end milling process of curved geometries. The undeformed chip thickness is then calculated according to the real kinematic trajectory of cutting edges under continuous change of the cutter axis orientation. A Z-map method is used to verify the engaged cutting edge and cutting coefficients are subsequently calibrated. The mechanistic method is applied to predict the cutting force. Validation tests are conducted under different cutter postures and cutting conditions. The comparison between predicted and measured values demonstrates the applicability of the proposed prediction model of cutting forces.

1996 ◽  
Vol 118 (1) ◽  
pp. 95-103 ◽  
Author(s):  
G. Yu¨cesan ◽  
Y. Altıntas¸

Mechanics of milling with ball ended helical cutters are modeled. The model is based on the analytic representation of ball shaped helical flute geometry, and its rake and clearance surfaces. It is assumed that friction and pressure loads on the rake face are proportional to the uncut chip thickness area. The load on the flank contact face is concentrated on the in cut portion of the cutting edge. The pressure and friction coefficients are identified from a set of slot ball end milling tests at different feeds and axial depth of cuts, and are used to predict the cutting forces for various cutting conditions. The experimentally verified model accurately predicts the cutting forces in three Cartesian directions.


2011 ◽  
Vol 223 ◽  
pp. 701-712 ◽  
Author(s):  
Yaman Boz ◽  
Huseyin Erdim ◽  
Ismail Lazoglu

5-axis ball-end milling processes are used in various industries such as aerospace, automotive, die-mold and biomedical industries. 5-axis machining provides reduced cycle times and more accurate machining via reduction in machining setups, use of shorter tools due to improved tool accessibility. However, desired machining productivity and precision can be obtained by physical modeling of machining processes via appropriate selection of process parameters. In response to this gap in the industry this paper presents a cutting force model for 5-axis ball-end milling cutting force prediction. Cutter-workpiece engagement is extracted via developed solid modeler based engagement model. Simultaneous 5-axis milling tests are conducted on Al7075 workpiece material with a carbide cutting tool. Validation of the proposed model is performed for impeller hub roughing toolpaths. Validation test proves that presented model is computationally efficient and cutting forces can be predicted reasonably well. The result of validation test and detailed comparison with the simulation are also presented in the paper.


2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.


Author(s):  
Chengfeng Li ◽  
Xinmin Lai ◽  
Hongtao Li ◽  
Linfa Peng ◽  
Jun Ni

This paper develops a three-axis micro milling machine for manufacturing meso-scale components and products. This machine utilizes high-speed miniature spindle to obtain appropriate cutting velocities, and three precision linear stages with 50 nm feed resolution to supply the relative motion. The PMAC2 controller is used to control three axes simultaneously, and a piezoelectric dynamometer is mounted on the X-Y stages to measure three-dimensional cutting forces for the real-time measurement and feedback. More than 200 cutting experiments of end milling operations are performed on the developed machine. When the machined feature ranges at meso scale, the characteristics and phenomena in milling process will heavily differ from those of conventional scale milling due to the size effects. The critical differences at meso scale arise from the breakdown of the assumptions of negligible edge radius effects. The roundness of cutting edge and the runout of spindle have a crucial impact on the chip formation process and the characteristics of cutting forces. The roundness of cutting edge also induces the existence of the minimum chip thickness and the intermittency of the chip formation at a low feed per tooth.


2014 ◽  
Vol 800-801 ◽  
pp. 254-258 ◽  
Author(s):  
Gang Gang Ju ◽  
Qing Hua Song ◽  
Zhan Qiang Liu

Five-axis ball-end milling technology is widely used in many industries such as aerospace, automotive and die-mold for complex surface machining. Despite recent advances in machining technology, productivity in five-axis ball-end milling is still limited due to the high cutting forces and stability. Moreover, cutting forces in machining is determined by extracting the cutter workpiece engagement (CWE) from the in-process workpiece. A discrete boundary representation method is developed. Cutter is firstly divided into disk elements along the tool axis. And in each disk element, boundary representation based exact Boolean method is introduced for extracting complex cutter-workpiece engagements at every cutter location due to its efficiency and speed over other discrete methods. Developed engagement model is proved to calculate complex engagement regions between tool and workpiece efficiently and accurately.


Sign in / Sign up

Export Citation Format

Share Document