Development of spiroid worm gear drive having arched profile in axial section and a new technology of spiroid worm manufacturing with lathe center displacement

2015 ◽  
Vol 79 (9-12) ◽  
pp. 1881-1892 ◽  
Author(s):  
Illés Dudás ◽  
Sándor Bodzás ◽  
Illés Szabolcs Dudás ◽  
Zoltán Mándy
2014 ◽  
Vol 11 (1) ◽  
pp. 25-29
Author(s):  
Sándor Bodzás ◽  
Illés Dudás

Abstract With the knowledge of the advantageous characteristics of the cylindrical worm gear drives having arched profile in axial section and the conical worm gear drives having linear profile in axial section, a new geometric type conical worm gear drive has been designed and then manufactured, that is the conical worm gear drive having arched profile in axial section. Beside similar charging and marginal conditions in case of the same geometric spiroid worm gear drives having arched profile and having linear profile in axial section we have done comparative finite element method analysis for awarding of the strains, deformations and stresses of this gear drives.


Author(s):  
Illés Dudás ◽  
Sándor Bodzás

In the last few decades in Hungary, the Budapest University of Technology and Economics and the University of Miskolc have been intensively focusing on the research field of worm gear drives [2, 5]. Our results at the University of Miskolc have also been published in a book published in the USA as well [2]. A new geometric worm gear drive has been developed, that is the conical worm gear drive having arched profiled in axial section [3]. The aim of our publication is to present the advantages, the geometric questions and the possible application fields of this new type worm gear drive.


2015 ◽  
Vol 6 (1) ◽  
pp. 31-39
Author(s):  
S. Bodzás ◽  
I. Dudás

With the knowledge of the advantageous characteristics of the cylindrical worm gear drives having arched profile in axial section and the conical worm gear drives having linear profile in axial section, a new geometric type conical worm gear drive has been designed and then manufactured, that is the conical worm gear drive having arched profile in axial section. Under same load and boundary conditions in case of the same geometric spiroid worm gear drives having arched profile and having linear profile in axial section we have done comparative finite element method analysis for evaluating the strains, deformations and stresses of this gear drives.


2017 ◽  
Vol 870 ◽  
pp. 432-438
Author(s):  
Illés Dudás ◽  
Sándor Bodzás

We have carried out a new geometric type spiroid worm gear drive having arched profile in axial section. We prepare the computer aided model (CAD) of this gear drive for other geometric and production analysis. The objectives of the publication are measuring of this spiroid worm using three coordination measuring machine and after doing noise analysis of this gear box.


Author(s):  
Mauro De Donno ◽  
Faydor L. Litvin

Abstract The authors propose methods of computerized design and analysis of a spiroid worm-gear drive with ground worm based on the following considerations: (1) The theoretical thread surface of the hob is generated by a cone surface. (2) The worm surface is crowned in profile and longitudinal directions in comparison with the hob thread surface. (3) The double crowning of the worm enables to localize the bearing contact and obtain a predesigned parabolic function of transmission errors of an assigned level. Computerized design of the worm-gear drive enables to discover and avoid singularities of the generated worm face-gear surface and pointing of teeth. The meshing and contact of the double-crowned worm and the worm face-gear is simulated to determine the influence of misalignment on the shift of bearing contact and transmission errors. Computer program for numerical solution is developed and applied. A numerical example that illustrates the developed theory is provided.


2014 ◽  
Vol 8 (2) ◽  
pp. 45-50
Author(s):  
Illés Dudás ◽  
Sándor Bodzás

Based on the general mathematical model of Illés Dudás which is appropriate for mathematical modelling of production technology methods we have worked out a model for resharpening analysis of conical hob. After the hob resharpening using numerical calculations the determination of the tooth surface of face gear by cutting edges is necessary for the analysis. Based on this methods we could calculate the permissible critical angle of the hob and the profiles of the hob and the face gear in axial section. The permissible critical angle of the hob is the critical angle the hob cutting edge of which manufactured face gear profile is situated in the permissible profile error tolerance. We have worked out a new geometric conical worm gear drive that is the conical worm gear drive having arched profile. Using this mathematical model we have done resharpening analysis for the hob having arched profile and determined the permissible critical angle.


1999 ◽  
Vol 121 (2) ◽  
pp. 264-273 ◽  
Author(s):  
M. De Donno ◽  
F. L. Litvin

The authors propose methods of computerized design and analysis of a spiroid worm-gear drive with ground worm based on the following considerations: (1) The theoretical thread surface of the hob is generated by a cone surface. (2) The worm surface is crowned in profile and longitudinal directions in comparison with the hob thread surface. (3) The double crowning of the worm enables to localize the bearing contact and obtain a predesigned parabolic function of transmission errors of an assigned level. Computerized design of the worm-gear drive enables to discover and avoid singularities of the generated worm face-gear surface and pointing of teeth. The meshing and contact of the double-crowned worm and the worm face-gear is simulated to determine the influence of misalignment on the shift of bearing contact and transmission errors. Computer program for numerical solution is developed and applied. A numerical example that illustrates the developed theory is provided.


Sign in / Sign up

Export Citation Format

Share Document