face gear
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 72)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Chao Lin ◽  
Yu Wang ◽  
Yanan Hu ◽  
Yongquan Yu

A new type of compound transmission gear pair was put forward, called eccentric curve-face gear pair with curvilinear-shaped teeth. It could realize reciprocating motion of the gear shaft when the intersecting shafts achieve transferring motion and power through its unique tooth profile. The compound transmission principle of this gear pair was fully established based on the profile-closure process of axial direction and meshing process of the end face. The tooth surfaces of the eccentric curve-face gear and non-circular gear were generated. The contact paths of different teeth were obtained, and the compound transmission principle of eccentric curve-face gear pair with curvilinear-shaped teeth was verified by tooth contact analysis. By analyzing the mechanical characteristics of time-varying contact points, the changing rule of contact force was studied, and the compound transmission principle of the gear pair was further revealed from mechanics. Moreover, the experimental platform for transmission of eccentric curve-face gear pair with curvilinear-shaped teeth was set up to measure the motion law and contact area, and the correctness of the analysis results was verified.


Author(s):  
Xian-Long Peng

The conventional tooth surface of a face gear is difficult to manufacture, and the cutter for the face gear cutting is not uniform even though the parameters of the pinion mating with the face gear slightly change. Based on the analysis of the geometry features of the tooth surface, a new developable ruled surface is defined as the tooth flank of the face gear, for which the most important geometry feature is that the flank could be represented by a family of straight lines, hence it could be generated by a straight-edged cutter. The mathematical models of the new ruled tooth surface, the cutter and the generation method are presented, the deviation between the ruled surface and the conventional surface, the correction of the ruled surface to reduce the deviation are investigated through numerical examples. The manufacturing process is simulated by VERICUT software, and the results demonstrate that even when the principle deviation is added to the machined deviation, the absolute deviation is on the micro-scale. The meshing and contact simulation shows that the new surface could obtain good meshing performance when the number of face gear teeth is greater than three times the number of pinion teeth. This research provides a new method for manufacturing face gears.


2021 ◽  
Author(s):  
Han ZHENGYANG ◽  
Jiang CHUANG ◽  
Deng Xiaozhong

Abstract To solve the manufacturing difficulties of non-orthogonal face gear, an efficient gear machining method referred to as power skiving is proposed. The machining principle of the power skiving and the relative position between the cutter tool and the workpiece are analyzed. Then, the mathematical model of machining non-orthogonal face gears by power skiving is established and the tooth flank equation is obtained. The installation and movement mode of non-orthogonal face gears on six-axis machine tool are analyzed and the machining parameters are calculated precisely. A method of tooth flank modification on the six-axis machine tool is presented by changing the machining parameters. The meshing performance of the obtained non-orthogonal face gear is analyzed by an example. Finally, the processing test and the tooth flank measurement are carried out. The experimental results show that the non-orthogonal face gear can be machined and modified by power skiving on the proposed six-axis machine tool.


Author(s):  
Shuai Mo ◽  
Yuling Song ◽  
Zhiyou Feng ◽  
Wenhao Song ◽  
Maoxiang Hou

The face gear power-split system has huge superiorities over the traditional transmission form in the application of modern rotorcraft, and it has become the research trend of the industry in recent years. Thus this paper took the double input face gear split-parallel transmission system used in the rotorcraft as the research target, and established its dynamics model through the lumped parameter theory. Based on the Newtonian second law, the dynamics equations were built and solved to gain the meshing forces and load sharing coefficients of the transmission system. Simultaneously, the impacts of the eccentric errors, support stiffness, and torsional stiffness on the load sharing characteristics were studied. The results show that the meshing forces and load sharing coefficients of each gear pair have periodic changes; the eccentric errors of each drive stage gear have only a significant effect on the corresponding drive stage. Moreover, the changes in the support stiffness of the split-torque shafts and double gear shafts mainly affect the load distribution of the parallel stage, and the shaft torsional stiffness is less sensitively to maintain load balance. In addition, the increment of the shaft stiffness increases the load sharing coefficients of the corresponding gear pairs.


Sign in / Sign up

Export Citation Format

Share Document