Three-dimensional finite element analysis of residual stresses in circumferential welds of 2205/X65 bimetallic pipe

2018 ◽  
Vol 96 (5-8) ◽  
pp. 2841-2851 ◽  
Author(s):  
Zhiqiang Dong ◽  
Jianxun Zhang
2017 ◽  
Vol 21 (3) ◽  
pp. 1301-1307 ◽  
Author(s):  
Nejad Masoudi ◽  
Mahmoud Shariati ◽  
Khalil Farhangdoost

The aim of this paper is to develop means to predict accurately the residual stresses due to quenching process of an UIC60 rail. A 3-D non-linear stress analysis model has been applied to estimate stress fields of an UIC60 rail in the quenching process. A cooling mechanism with water spray is simulated applying the elastic-plastic finite element analysis for the rail. The 3-D finite element analysis results of the studies presented in this paper are needed to describe the initial conditions for analyses of how the service conditions may act to change the as-manufactured stress field.


2002 ◽  
Vol 124 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Jidong Kang ◽  
W. Steven Johnson ◽  
David A. Clark

A three-dimensional finite element analysis is developed for the cold expansion process in two aluminum alloys, 2024-T351 and 7050-T7451. The entire cold working process including hole expansion, elastic recovery, and finish reaming is simulated. Both isotropic hardening and kinematic hardening models are considered in the numerical calculations. The results suggest that a three-dimensional nature exists in the residual stress fields surrounding the hole. There are significant differences in residual stresses at different sections through the thickness. However, residual stress at the surface is shown to remain the same for the different plastic hardening models after the hole has recovered and finish reaming has been performed. The reaming of the material around the hole has slight effect on the maximum value and distribution of residual stresses. A comparison has been drawn between the FEA of average through thickness strain and a previous experimental investigation of strain that utilized neutron diffraction and modified Sachs boring on a 7050 aluminum specimen containing a cold expanded hole. The different methods show very good agreement in the magnitude of strain as well as the general trend. The conclusions obtained here are beneficial to the understanding of the phenomenon of fatigue crack initiation and growth at the perimeter of cold worked holes.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document