Three-Dimensional Finite Element Analysis of the Cold Expansion of Fastener Holes in Two Aluminum Alloys

2002 ◽  
Vol 124 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Jidong Kang ◽  
W. Steven Johnson ◽  
David A. Clark

A three-dimensional finite element analysis is developed for the cold expansion process in two aluminum alloys, 2024-T351 and 7050-T7451. The entire cold working process including hole expansion, elastic recovery, and finish reaming is simulated. Both isotropic hardening and kinematic hardening models are considered in the numerical calculations. The results suggest that a three-dimensional nature exists in the residual stress fields surrounding the hole. There are significant differences in residual stresses at different sections through the thickness. However, residual stress at the surface is shown to remain the same for the different plastic hardening models after the hole has recovered and finish reaming has been performed. The reaming of the material around the hole has slight effect on the maximum value and distribution of residual stresses. A comparison has been drawn between the FEA of average through thickness strain and a previous experimental investigation of strain that utilized neutron diffraction and modified Sachs boring on a 7050 aluminum specimen containing a cold expanded hole. The different methods show very good agreement in the magnitude of strain as well as the general trend. The conclusions obtained here are beneficial to the understanding of the phenomenon of fatigue crack initiation and growth at the perimeter of cold worked holes.

2004 ◽  
Vol 32 (2) ◽  
pp. 257-263 ◽  
Author(s):  
M. L. Raghavan ◽  
S. Trivedi ◽  
A. Nagaraj ◽  
D. D. McPherson ◽  
K. B. Chandran

2017 ◽  
Vol 21 (3) ◽  
pp. 1301-1307 ◽  
Author(s):  
Nejad Masoudi ◽  
Mahmoud Shariati ◽  
Khalil Farhangdoost

The aim of this paper is to develop means to predict accurately the residual stresses due to quenching process of an UIC60 rail. A 3-D non-linear stress analysis model has been applied to estimate stress fields of an UIC60 rail in the quenching process. A cooling mechanism with water spray is simulated applying the elastic-plastic finite element analysis for the rail. The 3-D finite element analysis results of the studies presented in this paper are needed to describe the initial conditions for analyses of how the service conditions may act to change the as-manufactured stress field.


Author(s):  
Joong-Hyun Seo ◽  
Jong-Sung Kim

In this study, three-dimensional finite element residual stress analysis of a small bore penetration nozzle was performed using the commercial finite element program, ABAQUS. Comparing with the real PWSCC (primary water stress corrosion crack) history, it is identified that the finite element analysis is valid in the viewpoint of PWSCC initiation and growth. Parametric finite element residual stress analysis was systematically implemented in order to investigate effect of the geometric variables including nozzle outer diameter/thickness, buttering thickness, angle between central axes of head & nozzle, etc. on the residual stresses. As a result of the parametric analysis, it is found that effects of the nozzle outer diameter and the angle between central axes of head & nozzle on the maximum residual stress generation location and magnitude are significant while effects of the head thickness, the buttering thickness, the weld depth, and the nozzle thickness to outer diameter are insignificant.


Sign in / Sign up

Export Citation Format

Share Document