dissimilar steel
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5018
Author(s):  
Maohong Yang ◽  
Zheng Zhang ◽  
Linping Li

This paper studies the evolution of the microstructure and microhardness in the G115 side of the G115/Sanicro25 dissimilar steel welded joint during the creep process. The joints were subjected to creep tests at 675 °C, 140 MPa, 120 MPa and 100 MPa. A scanning electron microscope equipped with an electron backscattering diffraction camera was used to observe the microstructure of the cross-section. The fracture position of the joint and the relationship between the cavity and the second phase were analyzed. The microstructure morphology of the fracture, the base metal and the thread end was compared and the composition and size of the Laves phase were statistically analyzed. The results show that the fracture locations are all located in the fine-grain heat-affected zone (FGHAZ) zone, and the microstructure near the fracture is tempered martensite. There are two kinds of cavity in the fracture section. Small cavities sprout adjacent to the Laves phase; while large cavities occupy the entire prior austenite grain, there are more precipitated phases around the cavities. The Laves phase nucleates at the boundary of the M23C6 carbide and gradually grows up by merging the M23C6 carbide. Creep accelerates the coarsening rate of the Laves phase; aging increases the content of W element in the Laves phase.


Author(s):  
Junliang Xue ◽  
Peng Peng ◽  
Wei Guo ◽  
Mingsheng Xia ◽  
Caiwang Tan ◽  
...  

AbstractThe QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding. The weld zone (WZ) was fully martensitic structure, and heat-affected zone (HAZ) contained newly-formed martensite and partially tempered martensite (TM) in both steels. The super-critical HAZ of the QP980 side had higher microhardness (~ 549.5 Hv) than that of the WZ due to the finer martensite. A softened zone was present in HAZ of QP980 and DP980, the dropped microhardness of softened zone of the QP980 and DP980 was Δ 21.8 Hv and Δ 40.9 Hv, respectively. Dislocation walls and slip bands were likely formed at the grain boundaries with the increase of strain, leading to the formation of low angle grain boundaries (LAGBs). Dislocation accumulation more easily occurred in the LAGBs than that of the HAGBs, which led to significant dislocation interaction and formation of cracks. The electron back-scattered diffraction (EBSD) results showed the fraction of LAGBs in sub-critical HAZ of DP980 side was the highest under different deformation conditions during tensile testing, resulting in the failure of joints located at the sub-critical HAZ of DP980 side. The QP980-DP980 dissimilar steel joints presented higher elongation (~ 11.21%) and ultimate tensile strength (~ 1011.53 MPa) than that of DP980-DP980 similar steel joints, because during the tensile process of the QP980-DP980 dissimilar steel joint (~ 8.2% and 991.38 MPa), the strain concentration firstly occurred on the excellent QP980 BM. Moreover, Erichsen cupping tests showed that the dissimilar welded joints had the lowest Erichsen value (~ 5.92 mm) and the peak punch force (~ 28.4 kN) due to the presence of large amount of brittle martensite in WZ and inhomogeneous deformation.


2021 ◽  
Vol 12 ◽  
pp. 271-282
Author(s):  
Shengwei Zhang ◽  
Kun Gao ◽  
Sung-Tae Hong ◽  
Hyunuk Ahn ◽  
Yoongil Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document