Tribological and machining characteristics of a minimum quantity lubrication (MQL) technology using GO/SiO2 hybrid nanoparticle water-based lubricants as cutting fluids

2018 ◽  
Vol 96 (5-8) ◽  
pp. 2931-2942 ◽  
Author(s):  
Tao Lv ◽  
Shuiquan Huang ◽  
Xiaodong Hu ◽  
Yaliang Ma ◽  
Xuefeng Xu
Author(s):  
S. Vignesh ◽  
U. Mohammed Iqbal

This paper is concentrated on the exploration of carbonaceous nanocutting fluids with the concept of tri-hybridization with improved lubricative and cooling properties by using multi-walled carbon nanotubes, hexagonal boron nitride , and graphene nanoparticles with neat cold-pressed coconut oil in a fixed volumetric proportion. The rheological properties of the nanofluids were studied to assess their performance in real-time end milling operations using an AA7075 work piece on a CNC lathe machine under a minimum quantity lubrication environment. At the outset, the carbonaceous nanofluids gave good performance when compared to conventional cutting fluids. Furthermore, the surfaces of the tribo-pairs and the chips formed were analyzed using a profilometer and high-end microscopes. The results obtained from the experiments confirm that the tri-hybridized carbonaceous nanolubricant has reduced the cutting force, tool wear, and surface roughness when correlated to monotype nanofluids. The scanning electron microscope images of the surface and tool were studied and it was found that the surface quality was maintained while end milling with tri-hybridized carbonaceous nanofluid. Improvement of ∼17%, 20% and 25% in cutting forces, surface roughness and tool wear was found in tri-hybrid fluid when compared to other fluids. Thus, the present work indicates that the addition of carbon-based nanoparticles with coconut oil has offered better performance and is found to be a credible alternative to existing conventional cutting fluids.


Author(s):  
Xueming Yang ◽  
Xiang Cheng ◽  
Yang Li ◽  
Guangming Zheng ◽  
Rufeng Xu

Machining conditions such as cutting fluids exert a crucial function in micro-milling, which removes chips from the cutting area and lubricates the interface between the tool and workpiece. Therefore, it is necessary to identify suitable cutting fluids for processing different materials. In this article, the effects of cutting fluids (dry, flood cooling, minimum quantity lubrication, and jet cold air) on tool wear, surface roughness, and cutting force were studied. The Pugh matrix environmental approach was used to compare different cutting fluids in terms of sustainable production. In addition, a curved thin wall was processed to demonstrate the value of minimum quantity lubrication in industry. The experimental results illustrated that the minimum quantity lubrication can not only effectively reduce tool wear and cutting force but also improve the finished surface quality. According to the sustainability assessment results, minimum quantity lubrication was superior to other cutting fluids in terms of environmental impact and production quality. The curved thin wall size error was only 2.25% under minimum quantity lubrication condition. This indicated minimum quantity lubrication was particularly suitable for micro-milling of H59 brass and 6061 aluminum compared to other cutting fluids.


Sign in / Sign up

Export Citation Format

Share Document