Application of tri-hybridized carbonaceous nanocutting fluids in an end milling operation by the minimum quantity lubrication technique

Author(s):  
S. Vignesh ◽  
U. Mohammed Iqbal

This paper is concentrated on the exploration of carbonaceous nanocutting fluids with the concept of tri-hybridization with improved lubricative and cooling properties by using multi-walled carbon nanotubes, hexagonal boron nitride , and graphene nanoparticles with neat cold-pressed coconut oil in a fixed volumetric proportion. The rheological properties of the nanofluids were studied to assess their performance in real-time end milling operations using an AA7075 work piece on a CNC lathe machine under a minimum quantity lubrication environment. At the outset, the carbonaceous nanofluids gave good performance when compared to conventional cutting fluids. Furthermore, the surfaces of the tribo-pairs and the chips formed were analyzed using a profilometer and high-end microscopes. The results obtained from the experiments confirm that the tri-hybridized carbonaceous nanolubricant has reduced the cutting force, tool wear, and surface roughness when correlated to monotype nanofluids. The scanning electron microscope images of the surface and tool were studied and it was found that the surface quality was maintained while end milling with tri-hybridized carbonaceous nanofluid. Improvement of ∼17%, 20% and 25% in cutting forces, surface roughness and tool wear was found in tri-hybrid fluid when compared to other fluids. Thus, the present work indicates that the addition of carbon-based nanoparticles with coconut oil has offered better performance and is found to be a credible alternative to existing conventional cutting fluids.

Author(s):  
S Vignesh ◽  
U Mohammed Iqbal

The current paper is concentrated on the mechanical and machining process exploration of metallic nano-lubricant with the concept of tri-hybridization with improved lubricative and cooling properties by using TiO2, ZnO and Fe2O3 metallic nano particles with neat cold-pressed coconut oil in a fixed volumetric proportion (10:90). End milling of gummy material like aluminium requires a solution to the conventional dry and wet machining due to high productivity requirement and to obtain good surface quality. So, the prepared nanofluids were tested for their rheological behavior and latter introduced into milling of AA7075 as a solution to the above stated problem. Overall, the nanofluids gave good performance when compared to conventional methods. Furthermore, the results obtained from the experiments confirm that the trio-hybridized lubricant has reduced the cutting force, tool wear and surface roughness in an improved way when related to monotype nano fluids. The response surface methodology is performed to evaluate the interaction of process parameters in minimum quantity lubrication environment with nano fluids. The results show that the cutting forces, surface roughness, tool wear was minimized while machining with hybrid cutting fluids and well within the desirability.


Author(s):  
P. V. Krishna ◽  
R. R. Srikant ◽  
N. Parimala

This work is motivated by environmentally conscious machining and focus on the basic properties and applicability of nano cutting fluids in machining. Cutting fluids are formulated by dispersing carbon nanotubes (CNT) in coconut oil (CC) with varying percentage of nanoparticle inclusions (NPI). The properties such as density, heat transfer coefficient, dynamic viscosity and thermal conductivity are determined before their application. The formulated nanofluids are applied during machining through minimum quantity lubrication (MQL) technique. Microbial contamination and biodegradability tests are conducted to assess the quality of nanocutting fluids. Viscosity is found to decrease with increase in temperature where, as specific heat slightly decreased with an increase in NPI for CNT dispersed fluids. It is observed that nanofluids in MQL upshot in the reduction of cutting force, cutting temperature, tool wear and surface roughness. CNT dispersed cutting fluids at 0.5% NPI and speed of 60 m/min, 0.131 mm/rev feed and 0.5 mm depth of cut (DOC) shown better performance in the selected range of parameters. Machining performance is more influenced by the percentage of nanoparticles and then the depth of cut, speed and feed respectively. For the cutting conditions, the influence of DOC in obtaining minimum cutting forces and reducing cutting temperatures is found to be 85% and 45% respectively for nBA dispersed fluids. The extent of influence of %NPI is found to be 35.19% for CNT dispersed fluids to obtain reduced cutting forces, cutting temperatures, tool wear and surface roughness according to GRA analysis. Microbial contamination is observed to be the least for 0.5% NPI dispersed fluids. It is also identified that nano cutting fluids used in this work are biodegradable and biologically treatable for disposal as well.


Author(s):  
Kuan-Ming Li ◽  
Shih-Yen Chou

Micro-milling is a suitable technique for manufacturing of microstructures with high aspect ratios and intricate geometries. The application of the micro-milling process in cutting hardened tool steel is particularly challenging. The low strength of the miniaturized end mills implies accurate control of the chip load in order to prevent the tool break and product dimension errors, which requires high positioning accuracy. It is known that the application of cutting fluids can improve the performance of machining operations. However, the supply of cutting fluids in a conventional way is not appropriate for miniature machine tools due to the plentiful electronic components used to construct micro-scale machine tools. Minimum quantity lubrication (MQL) presents itself as a possible alternative for micro-cutting with respect to the minimum impact on the electronic components as well as low tool wear, better heat dissipation, and machined surface quality in metal cutting. This study compares the mechanical performance of MQL to completely dry condition for the micro-milling of SKD 61 steel based on experimental measurements of tool wears and surface finish. The effect of MQL on the burr formation is also observed. Results indicate that the use of MQL leads to reduced tool wears, better surface roughness, and less burr formation.


Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


Author(s):  
Xueming Yang ◽  
Xiang Cheng ◽  
Yang Li ◽  
Guangming Zheng ◽  
Rufeng Xu

Machining conditions such as cutting fluids exert a crucial function in micro-milling, which removes chips from the cutting area and lubricates the interface between the tool and workpiece. Therefore, it is necessary to identify suitable cutting fluids for processing different materials. In this article, the effects of cutting fluids (dry, flood cooling, minimum quantity lubrication, and jet cold air) on tool wear, surface roughness, and cutting force were studied. The Pugh matrix environmental approach was used to compare different cutting fluids in terms of sustainable production. In addition, a curved thin wall was processed to demonstrate the value of minimum quantity lubrication in industry. The experimental results illustrated that the minimum quantity lubrication can not only effectively reduce tool wear and cutting force but also improve the finished surface quality. According to the sustainability assessment results, minimum quantity lubrication was superior to other cutting fluids in terms of environmental impact and production quality. The curved thin wall size error was only 2.25% under minimum quantity lubrication condition. This indicated minimum quantity lubrication was particularly suitable for micro-milling of H59 brass and 6061 aluminum compared to other cutting fluids.


Sign in / Sign up

Export Citation Format

Share Document