A cutting force model based on compensated chip thickness in five-axis flank milling

2019 ◽  
Vol 104 (1-4) ◽  
pp. 1413-1423 ◽  
Author(s):  
Liping Wang ◽  
Xing Yuan ◽  
Hao Si ◽  
Yuzhe Liu
Author(s):  
R. Curti ◽  
B. Marcon ◽  
L. Denaud ◽  
M. Togni ◽  
R. Furferi ◽  
...  

AbstractThe influence of the grain angle on the cutting force when milling wood is not yet detailed, apart from particular cases (end-grain, parallel to the grain, or in some rare cases 45°-cut). Thus, setting-up wood machining operations with complex paths still relies mainly on the experience of the operators because of the lack of scientific knowledge easily transferable to the industry. The aim of the present work is to propose an empirical model based on specific cutting coefficients for the assessment of cutting force when peripheral milling of wood based on the following input: uncut chip thickness and width, grain angle (angle between the tool velocity vector and the grain direction of the wood), density and tool helix angle. The specific cutting coefficients were determined by peripheral milling with different depths of cut wood disks issued from different wood species on a dynamometric platform to record the forces. Milling a sample into a round shape (a disk) allows to measure the cutting forces toward every grain angle into a sole basic diameter reduction operation. Force signals are then post-processed to carefully clean the natural vibrations of the system without impacting their magnitudes. The experiment is repeated on five species with a large range of densities, machining two disks per species for five depths of cut in up- and down milling conditions for three different tool helix angles. Finally, a simple cutting force model, based on the previously cited parameters, is proposed, and its robustness analysed.


Author(s):  
W. Ferry ◽  
Y. Altintas

Jet engine impeller blades are flank-milled with tapered, helical, ball-end mills on five-axis machining centers. The impellers are made from difficult-to-cut titanium or nickel alloys, and the blades must be machined within tight tolerances. As a consequence, deflections of the tool and flexible workpiece can jeopardize the precision of the impellers during milling. This work is the first of a two part paper on cutting force prediction and feed optimization for the five-axis flank milling of an impeller. In Part I, a mathematical model for predicting cutting forces is presented for five-axis machining with tapered, helical, ball-end mills with variable pitch and serrated flutes. The cutter is divided axially into a number of differential elements, each with its own feed coordinate system due to five-axis motion. At each element, the total velocity due to translation and rotation is split into horizontal and vertical feed components, which are used to calculate total chip thickness along the cutting edge. The cutting forces for each element are calculated by transforming friction angle, shear stress and shear angle from an orthogonal cutting database to the oblique cutting plane. The distributed cutting load is digitally summed to obtain the total forces acting on the cutter and blade. The model can be used for general five-axis flank milling processes, and supports a variety of cutting tools. Predicted cutting force measurements are shown to be in reasonable agreement with those collected during a roughing operation on a prototype integrally bladed rotor (IBR).


2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.


2006 ◽  
Vol 2 (2) ◽  
pp. 167-179 ◽  
Author(s):  
R. P. H. Faassen ◽  
N. van de Wouw ◽  
H. Nijmeijer ◽  
J. A. J. Oosterling

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. In most models regarding milling, the cutter is assumed to follow a circular tooth path. However, the real tool path is trochoidal in the ideal case, i.e., without vibrations of the tool. Therefore, models using a circular tool path lead to errors, especially when the cutting angle is close to 0 or π radians. An updated model for the milling process is presented which features a model of the undeformed chip thickness and a time-periodic delay. In combination with this tool path model, a nonlinear cutting force model is used, to include the dependency of the chatter boundary on the feed rate. The stability of the milling system, and hence the occurrence of chatter, is investigated using both the traditional and the trochoidal model by means of the semi-discretization method. Due to the combination of this updated tool path model with a nonlinear cutting force model, the periodic solution of this system, representing a chatter-free process, needs to be computed before the stability can be investigated. This periodic solution is computed using a finite difference method for delay-differential equations. Especially for low immersion cuts, the stability lobes diagram (SLD) using the updated model shows significant differences compared to the SLD using the traditional model. Also the use of the nonlinear cutting force model results in significant differences in the SLD compared to the linear cutting force model.


2010 ◽  
Vol 33 ◽  
pp. 356-362 ◽  
Author(s):  
Xionig Ying Pu ◽  
Wei Jun Liu ◽  
Ji Bin Zhao

A new cutting force model for peripheral milling is presented based-on a developed algorithm for instantaneous undeformed chip surface with NURBS. To decrease the number of the differential element, the contact cutting edges of end-milling cutter with the part and the chip thickness curve are represented by NURBS helix, and the instantaneous undeformed chip is constructed as a ruled surface with the two curves. The cutting force generated by the edge contact length and the uncut chip area. Using the cutting coefficients from Budak[1] , the cutting-force model verified by simulation. The simulation results indicate that new cutting-force model predict the cutting forces in peripheral milling accurately.


Author(s):  
Shih-Ming Wang ◽  
Zou-Sung Chiang ◽  
Da-Fun Chen

To enhance the implementation of micro milling, it is necessary to clearly understand the dynamic characteristics of micro milling so that proper machining parameters can be used to meet the requirements of application. By taking the effect of minimum chip thickness and rake angle into account, a new cutting force model of micro-milling which is function the instantaneous cutting area and machining coefficients was developed. According to the instantaneous rotation trajectory of cutting edge, the cutting area projected to xy-plane was determined by rectangular integral method, and used to solve the instantaneous cutting area. After the machining coefficients were solved, the cutting force of micro-milling for different radial depths of cut and different axial depths of cut can be predicted. The results of micro-milling experimental have shown that the force model can predict the cutting force accurately by which the optimal cutting parameters can be selected for micro-milling application.


Author(s):  
Hao Si ◽  
Liping Wang

Five-axis flank milling is the most commonly used processing method in the aviation industry for the machining of thin-walled parts with complex ruled surfaces. During machining, the tool/workpiece deformations caused by the cutting force often lead to surface errors on the machined components that severely affect the accuracy of the machining results. This article presents an iterative compensation strategy to reduce the tool/workpiece deformation-induced surface error during the five-axis flank milling of thin-walled workpieces by modifying the tool tip position and tool axis orientation. This approach can be implemented in four steps. First, a highly integrated cutter-workpiece engagement extraction method is developed for the construction of a flexible cutting force model that can follow changes in the process geometry. Second, the tool/workpiece deformations are predicted by the cantilever beam model and finite element model, respectively. Third, an off-line error compensation scheme is performed at each cutting location of the tool path to obtain the modified tool position. Fourth, the machined surface of the workpiece model is reconstructed, and the compensated machining code, which can be used directly for actual machining, is generated. A case study is presented at the end of this article, and the effectiveness of the present compensation strategy is verified by machining experiments.


Sign in / Sign up

Export Citation Format

Share Document