Prediction modeling of surface roughness in milling of carbon fiber reinforced polymers (CFRP)

2021 ◽  
Vol 113 (1-2) ◽  
pp. 389-405 ◽  
Author(s):  
Jiang Xiaohui ◽  
Gao Shan ◽  
Zhang Yong ◽  
He Shirong ◽  
Liu Lei
2019 ◽  
Vol 26 (09) ◽  
pp. 1950060 ◽  
Author(s):  
UĞUR KOKLU ◽  
SEZER MORKAVUK

In order to reduce the adverse effects on the environment and economy and to avoid health problems caused by the excessively used cutting lubrications, cryogenic machining is drawing more and more attention. In this work, a novel cryogenic machining approach was applied for drilling of carbon fiber-reinforced polymers (CFRPs). According to this approach, CFRP was dipped into the liquid nitrogen (LN2) and it was machined within the cryogenic coolant directly. Various machinability characteristics on thrust force, delamination damage, tool wear, surface roughness, and topography were compared with those obtained with dry condition. This experimental study revealed that the novel method of machining with cryogenic dipping significantly reduced tool wear and surface roughness but increased thrust force. Overall results showed that the cryogenic machining approach in this study improved the machinability of CFRP.


2011 ◽  
Vol 343-344 ◽  
pp. 142-149 ◽  
Author(s):  
Jian Shi ◽  
Kiyoshi Kemmochi ◽  
Li Min Bao

The objective of the present study is to investigate the effect of pyrolysis time and temperature on the mechanical properties of recycled carbon fiber, based on tensile strength measurements, determining the optimum decomposition conditions for carbon fiber-reinforced polymers (CFRPs) by superheated steam. In this research, CFRPs were efficiently depolymerized and reinforced fibers were separated from resin by superheated steam. Tensile strength of fibrous recyclates was measured and compared to that of virgin fiber. Although tensile strength of recycled fibers were litter lower than that of virgin fiber, under some conditions tensile strength of recycled fibers were close to that of virgin fiber. With pyrolysis, some char residue from the polymer remains on the fibers and degrees of char on the recycled fibers were closely examined by scanning electron microscopy.


Biomaterials ◽  
2021 ◽  
pp. 120719
Author(s):  
Corrine Ying Xuan Chua ◽  
Hsuan-Chen Liu ◽  
Nicola Di Trani ◽  
Antonia Susnjar ◽  
Jeremy Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document