slot milling
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Kourosh Tatar ◽  
Inge Svenningsson

AbstractThe tool geometry is generally of great significance in metal cutting performance. The response surface method was used to optimize chamfer geometry to achieve reliable and minimum tool wear in slot milling. Models were developed for edge chipping, rake wear, and flank wear. The adequacy of the models was verified using analysis of variance at a 95% confidence level. Each response was optimized individually, and the multiple responses were optimized simultaneously using the desirability function approach. The Monte Carlo simulation method was applied to tolerance analysis. All milling tests were conducted at dry conditions; the chamfer width and the chamfer angle varied between 0.1 and 0.3 mm, and 10 and 30°, respectively. Optimal chamfer geometry for minimizing chipping and rake wear was small chamfer width and chamfer angle. The flank wear reached the minimum value for the tool with 0.18 mm chamfer width and 10° chamfer angle. The obtained composite model predicted good edge strength and minimum overall wear when the chamfer was 0.1 mm wide at a 10° angle. Thermal cracks were observed on the tools. They were small on the edges with the finest and least negative chamfer but were more significant on the more negative and greater chamfer. A great chamfer width and chamfer angle also resulted in insufficient chip evacuation. The results show how the edge geometry affects the tool’s reliability and wear and may help manufacturers minimize tool cost and downtime.


2021 ◽  
Vol 9 (4) ◽  
pp. 045035
Author(s):  
S Gowthaman

Abstract Cutter nomenclature and machining conditions has invoke critical impact on the machining behavior and surface integrity of machined samples. In this investigation, the slot milling operation has been performed under various cutter terminology or nomenclature (cutter with the RRA of −7°, 0° and 7°) and cutting conditions (spindle speed, table feed and MQL flow rate) to analyze its resulting outcome on the surface morphological features such as surface roughness (Sa), skewness (S sk ) and kurtosis (S ku ), etc Because the examination of these characteristics are important and significant to analyze the behavioral changes of asperities such as decohesion, wear resistance and adhesion, etc during in its relative motion. Additionally, the plasticity index and surface morphology of machined samples are helps to predict the variation in surface morphology under various machining behavior and through this study, it is found that the interactive effect of MQL flow rate and table feed offer higher and significant impact over the surface characteristics followed by the MQL flow rate during slot milling process.


Author(s):  
Júlio C.G. Milan ◽  
Alisson R. Machado ◽  
Ítalo V. Tomaz ◽  
Leonardo R.R. da Silva ◽  
Celso A. Barbosa ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 123-140
Author(s):  
Kushendarsyah Saptaji ◽  
Farid Triawan ◽  
Tong Keong Sai ◽  
Asmelash Gebremariam

The existence of top burrs in micro-scale features produced by milling process can deteriorate the surface quality of a product. Ductile metals, such as aluminum alloys, are prone to suffer from top burrs formation after a slot-milling process. A brief review on the state-of-the-art of burr removal process in micro-scale milling is provided in this paper. Various deburring methods were reportedly able to remove the burrs in micro-scale features, however a much simpler method is still needed. In the present work, a deburring process by stainless steel end brushing is introduced for aluminum mould used in microfluidic device fabrication. The micro-scale features are produced by slot-milling process followed by the deburring process. The deburred moulds are then visually observed using optical microscope and Scanning Electron Microscope (SEM) and the average surface roughness and its features profile are measured using 3D Laser Scanning Confocal Microscope. As a result, the proposed deburring method can successfully remove the top burrs, as indicated by a height reduction of about 21% due to the removal action by the brush. Hence, a burr-free embossing mould with complex shape channel features can be produced by milling and by applying a simple deburring process using stainless steel end brush.


Sign in / Sign up

Export Citation Format

Share Document