Analysis of stress-strain in the partial heating roll forming process of high strength square hollow steel sections

Author(s):  
Zelalem Abathun Mehari ◽  
Jingtao Han ◽  
Xuefeng Peng ◽  
Yu Wang
Author(s):  
Zelalem Abathun Mehari ◽  
Jingtao Han

With the growing demand for rectangular and square hollow steel sections in the last few decades, the cold roll forming process has become a widely acknowledged hollow sections manufacturing method; however, residual stress generated during the roll forming process is one of the primary concerns on roll-formed products. In this regard, several researchers have conducted numerical and experimental investigations of residual stress distributions on roll-formed steel sections. However, most of the studies found in the literature have been confined to the measurement of residual surface stresses. On the other hand, experimental studies conducted on fatigue and load-carrying capacity of hollow structural steels have shown that there is indeed a simple relation between the through-thickness residual stress distributions and mechanical properties of structures. Thus, this paper employed a proper numerical modelling procedure using LS-DYNA’s finite element code to explore through-thickness residual stress distributions generated during the roll forming process of rectangular and square hollow steel sections from different material grades. Moreover, a small-scale parametric study was conducted to explore the effects of the partial heating roll forming method on through-the-thickness residual stress distributions to satisfy the growing demand for residual stress-free roll-formed products.


2018 ◽  
Vol 878 ◽  
pp. 296-301
Author(s):  
Dong Won Jung

The roll forming is one of the simplest manufacturing processes for meeting the continued needs of various industries. The roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for making structural components. In order to reduce the thinning of the sheet product, traditionally the roll forming has been suggested instead of the stamping process. The increased product performance, higher quality, and the lowest cost with other advantages have made roll forming processes suitable to form any shapes in the sheets. In this numerical study, a Finite Element Method is applied to estimate the stress, strain and the thickness distribution in the metal sheet with quadrilateral shape, ribs formed by the 11 steps roll forming processes using a validated model. The metal sheet of size 1,000 × 662 × 1.6 mm taken from SGHS steel was used to form the quadrilateral shape ribs on it by the roll forming process. The simulation results of the 11 step roll forming show that the stress distribution was almost uniform and the strain distribution was concentrated on the ribs. The maximum thinning strain was observed in the order of 15.5 % in the middle rib region possibly due to the least degree of freedom of the material.


2014 ◽  
Vol 622-623 ◽  
pp. 322-329
Author(s):  
Kwang Soo Park ◽  
Sook Hwan Kim ◽  
Dong Kyu Kim

A jack-up rig or a self-elevating unit is a type of mobile platform that consists of a buoyant hull fitted with a number of movable legs, capable of raising its hull over the surface of the sea. The buoyant hull enables transportation of the unit and all attached machinery to a desired location. Once on location the hull is raised to the required elevation above the sea surface on its legs supported by the sea bed. The legs of such units may be designed to penetrate the sea bed, may be fitted with enlarged sections or footings, or may be attached to a bottom mat. Generally Jack up rigs are not self-propelled and rely on tugs or heavy lift shipsfor transportation. Formability problems in offshore structure construction where particularly high-strength steels are used for chords and racks. Attainment of mechanical properties is not usually difficult, although procedural trials are advisable. Fatigue cracking is probably the major cause of service failure of jack-up rigs, and the use of high-strength steels, which permits higher static stress limits, can exacerbate this problem. Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, it is time-consuming and much money is needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process.


2014 ◽  
Vol 611-612 ◽  
pp. 425-435 ◽  
Author(s):  
Lander Galdos ◽  
Unai Ulibarri ◽  
Imanol Gil ◽  
Rafael Ortubay ◽  
Eneko Sáenz de Argandoña

Roll forming process is an interesting process for the production of complex profiles because of its high production rate, low investment and efficient use of material. Furthermore, and due to their high yield strength, this technology is suitable for the forming of Advanced High Strength Steels which are being increasingly introduced in the automobile sector.


Sign in / Sign up

Export Citation Format

Share Document