scholarly journals Die Designs of Cold Roll Forming Process for Car Bumper Using Advanced High Strength Steel

2017 ◽  
Vol 207 ◽  
pp. 1308-1313
Author(s):  
J.J. Sheu ◽  
C.H. Yu ◽  
J.K. Wang
2018 ◽  
Vol 878 ◽  
pp. 296-301
Author(s):  
Dong Won Jung

The roll forming is one of the simplest manufacturing processes for meeting the continued needs of various industries. The roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for making structural components. In order to reduce the thinning of the sheet product, traditionally the roll forming has been suggested instead of the stamping process. The increased product performance, higher quality, and the lowest cost with other advantages have made roll forming processes suitable to form any shapes in the sheets. In this numerical study, a Finite Element Method is applied to estimate the stress, strain and the thickness distribution in the metal sheet with quadrilateral shape, ribs formed by the 11 steps roll forming processes using a validated model. The metal sheet of size 1,000 × 662 × 1.6 mm taken from SGHS steel was used to form the quadrilateral shape ribs on it by the roll forming process. The simulation results of the 11 step roll forming show that the stress distribution was almost uniform and the strain distribution was concentrated on the ribs. The maximum thinning strain was observed in the order of 15.5 % in the middle rib region possibly due to the least degree of freedom of the material.


2020 ◽  
Vol 107 (3-4) ◽  
pp. 1793-1804
Author(s):  
Cheng Jiao-Jiao ◽  
Cao Jian-Guo ◽  
Zhao Qiu-Fang ◽  
Liu Jiang ◽  
Yu Ning ◽  
...  

2014 ◽  
Vol 2014.22 (0) ◽  
pp. 163-164
Author(s):  
Shintaro AKANUMA ◽  
Tomoya SUZUKI ◽  
Hayato ASO ◽  
Bunkyo KYO ◽  
Shinichi NISHIDA ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1902
Author(s):  
Zhijuan Meng ◽  
Yanan Fang ◽  
Lidong Ma

In order to implement rapid prediction of edge defects in the cold roll forming process, a new analytical method based on the mean longitudinal strain of the racks is presented. A cubic spline curve with the parameters of the cumulative chord length is applied to fit the corresponding points and center points of different passes, and fitting curves are obtained. As the cold roll forming is micro-tension forming, the tensions between racks are ignored. Then the mean longitudinal strains between racks are obtained. By comparing the mean longitudinal strain between racks and the yield strain of the material, we can judge whether there are defects at the edges. Finally, the reasonableness of this method is illustrated and validated by an example. With this method, the roll forming effect can be quickly predicted, and the position where a greater longitudinal strain occurred can be determined. In order to prevent the defects, the deformation angles need to be modified when the result is beyond the yield strain. To further prove the correctness of the theory, the results of the analytical method are compared with the ones of the non-linear finite element software ABAQUS. The analytical results have the same trend as the finite element results. This method can provide useful guidance to the actual design process.


2015 ◽  
Vol 651-653 ◽  
pp. 219-224 ◽  
Author(s):  
Antonio Formisano ◽  
F. Capece Minutolo ◽  
Antonio Caraviello ◽  
Luigi Carrino ◽  
Massimo Durante ◽  
...  

Cold roll forming is a process for plastic deformation, which allows realizing profiles, with a defined section and established length, from the plastic deformation of a metal sheet. The sheet is induced to cross several stands of rolls, arranged along the same axis of advancing. The rolls induce plastic deformation in the sheet and then lead it to the desired geometric configuration. In order to control the geometric parameters of the plate during the profiling, it was created a FEM model to simulate the final stage of the technological process, developed by an industrial production line of a company located in Naples (Italy), that sells tubes with several cross sections. In this phase, the semi-finished product, having a circular cross section, is forced to cross through four stands of rolls. In this way, it changes the geometric condition of the cross section from circular to square. The model was carried out using a non-linear calculation code, which allows analyzing the parameters of interest in the different process steps. The results, obtained numerically, were compared with the experimental ones through the measurement of five specimens, obtained directly from technological process. The values of percentage deviation, regarding the external dimension and the thickness, for each step of advancement, do not exceed the 3% of error. Then, the analysis results denote the capability to simulate the cold roll forming process using finite element method.


Sign in / Sign up

Export Citation Format

Share Document