Finite element analysis and experimental validation of high-speed laser surface hardening process

Author(s):  
Epparla Anusha ◽  
Adepu Kumar ◽  
Sulthan Mohiddin Shariff
2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


2012 ◽  
Vol 54 (1) ◽  
pp. 74-83 ◽  
Author(s):  
V. Karthik ◽  
P. Visweswaran ◽  
Anand Bhushan ◽  
D.N. Pawaskar ◽  
K.V. Kasiviswanathan ◽  
...  

Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Sign in / Sign up

Export Citation Format

Share Document