geometric optimization
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 126)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 1049 ◽  
pp. 180-185
Author(s):  
Viktor Mavrinskii ◽  
Evgeniy A. Belenkov

Calculations of the structural and energy parameters, band structure and density of electronic states of new structural varieties of graphyne have been performed by the density functional theory method. The initial structure of the nine polymorphs was theoretically constructed on the basis of the 5-7a graphene layer. As a result of the calculations, the structure of only five graphyne layers was found to be stable: α-L5-7a, β1-L5-7a, β2-L5-7a, β3-L5-7a and β4-L5-7a. The structure of layers γ1-L5-7a, γ2-L5-7a, and γ3-L5-7a is transformed into the structure of graphene layers by geometric optimization, and the graphyne layer γ4-L5-7a is transformed sp+sp2 layer L3-6-13. The sublimation energy of the stable graphyne polymorphs varies from 6.66 to 6.78 eV/atom. The density of electronic states at the Fermi energy level for all α-L5-7a and β-L5-7a layers of graphyne is different from zero, so the new graphyne polymorphs should have metallic properties.


2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Marco Menegozzo ◽  
Frederick A. Just-Agosto ◽  
David Serrano Acevedo ◽  
Basir Shafiq ◽  
Andrés Cecchini ◽  
...  

A major obstacle to obtaining cost-effective experimental data on the fatigue life of sandwich panels is the prohibitive amount of time and cost required to carry out millions of cycles. On the other hand, vibration techniques applied to sandwich geometries fail to match the stress patterns that are obtained from standard flexural fatigue tests. To overcome such limitations, a vibration-based fatigue technique is proposed, which entails the use of sandwich specimens whose geometries are optimized to reproduce the stress distribution observed during three point bend loading while vibrating at the first resonant frequency. The proposed vibration technique was experimentally validated. The results, compared with the average number of cycles to failure at different stress ratios obtained via the Three-Point Bending test, showed high levels of accuracy. The proposed method is robust and time effective and indicates the possibility of attaining fatigue lifetime prediction of a wide class of composite elements, such as sandwich panels.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8511
Author(s):  
Himayat Ullah Jan ◽  
Faisal Khan ◽  
Basharat Ullah ◽  
Muhammad Qasim ◽  
Malak Adnan Khan ◽  
...  

This paper presents a Hybrid Excited Double-Sided Linear Flux Switching Machine (HEDSLFSM) with a crooked tooth modular stator. Generally, the conventional stators are made of a full-length iron core, increasing manufacturing costs and iron losses. Higher iron losses result in lower efficiency and lower overall performance. A U-shaped modular stator with a crooked tooth is used to lower iron consumption and increase the machine’s efficiency. Ferrite magnets are used to replace rare earth magnets, which also reduces the machine cost. Two DC excitation windings are used above and below the ferrite magnet to reduce the PM volume. 2D electromagnetic performance analysis is done to observe the key performance indices. Geometric optimization is used to optimize the Split Ratio (S.R), DC winding slot area (DCw), and AC winding slot area (ACw). Stator Tooth Width (STW), space between the modules (S.S.), and crooked angle (α) are optimized through JMAG in-built Genetic Algorithm (G.A.) optimization. High thrust force density and modular stator make it a good candidate for long-stroke applications like railway transits. The thermal analysis of the machine is performed by FEA analysis and then validated by 2D LPMC (Lumped Parametric Magnetic Equivalent Circuit) model. Both analyses are compared, and an error percentage of less than 4% is achieved.


2021 ◽  
pp. 61-84
Author(s):  
W. C. Barber ◽  
E. Kuksin ◽  
J. C. Wessel ◽  
J. S. Iwanczyk ◽  
E. Morton

Author(s):  
Érica Victor de Faria ◽  
Fernanda Falqueto Salvador ◽  
Guilherme Guimarães Ascendino ◽  
Marcos Antonio de Souza Barrozo ◽  
Luiz Gustavo Martins Vieira

Fibers ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 77
Author(s):  
Vladimir Pervadchuk ◽  
Daria Vladimirova ◽  
Irina Gordeeva ◽  
Alex G. Kuchumov ◽  
Dmitrij Dektyarev

In this work, a new approach to solving problems of optimal control of manufacture procedures for the production of silica optical fiber are proposed. The procedure of silica tubes alloying by the Modified Chemical Vapor Deposition (MCVD) method and optical fiber drawing from a preform are considered. The problems of optimal control are presented as problems of controlling distributed systems with objective functionals and controls of different types. Two problems are formulated and solved. The first of them is the problem of the temperature field optimizing in the silica tubes alloying process in controlling the consumption of the oxygen–hydrogen gas mixture (in the one- and two-dimensional statements), the second problem is the geometric optimization of fiber shape in controlling the drawing velocity of the finished fiber. In both problems, while using an analog to the method of Lagrange, the optimality systems in the form of differential problems in partial derivatives are obtained, as well as formulas for finding the optimal control functions in an explicit form. To acquire optimality systems, the qualities of lower semicontinuity, convexity, and objective functional coercivity are applied. The numerical realization of the obtained systems is conducted by using Comsol Multiphysics.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012052
Author(s):  
David Olugbenga Ariyo ◽  
Tunde Bello-Ochende

Abstract Deionized water at a temperature of 25 °C was used as the cooling fluid and aluminium as the heat sink material in the geometric optimization and parameter modelling of subcooled flow boiling in horizontal equilateral triangular microchannel heat sinks. The thermal resistances of the microchannels were minimized subject to fixed volume constraints of the heat sinks and microchannels. A computational fluid dynamics (CFD) ANSYS code used for both the simulations and the optimizations was validated by the available experimental data in the literature and the agreement was good. Fixed heat fluxes between 100 and 500 W/cm2 and velocities between 0.1 and 7.0 m/s were used in the study. Despite the relatively high heat fluxes in this study, the base temperatures of the optimal microchannel heat sinks were within the acceptable operating range for modern electronics. The pumping power requirements for the optimal microchannels are low, indicating that they can be used in the cooling of electronic devices.


2021 ◽  
Author(s):  
Qianhao Zhao ◽  
Tongyu Huang ◽  
Zheng Hu ◽  
Tongjun Bu ◽  
ShuGang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document