Finite element analysis of spherical indentation to study pile-up/sink-in phenomena in steels and experimental validation

2012 ◽  
Vol 54 (1) ◽  
pp. 74-83 ◽  
Author(s):  
V. Karthik ◽  
P. Visweswaran ◽  
Anand Bhushan ◽  
D.N. Pawaskar ◽  
K.V. Kasiviswanathan ◽  
...  
Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


Author(s):  
Minh-Quy Le ◽  
Jin-Woo Yi ◽  
Seock-Sam Kim

Spherical indentation problems of ceramic coatings/metallic inter-layer/ductile substrate were investigated numerically by axisymmetric finite element analysis (FEA) for two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel. Various indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. Radial stress distribution and plastic damage zones evolution were discussed in connection with model parameters. The results showed that the suitable metallic interlayer could improve resistance of ceramic coating systems through reducing the peak tensile radial stress on the surface and interface of ceramic coatings and plastic damage zone size in the substrate under spherical indentation.


2006 ◽  
Vol 524-525 ◽  
pp. 549-554 ◽  
Author(s):  
W.R. Mabe ◽  
W.J. Koller ◽  
A.M. Holloway ◽  
P.R. Stukenborg

This paper presents the results of an experimental validation of the deep hole drill residual stress measurement method. A validation test specimen was fabricated and plastically loaded to impose a permanent residual stress field within the specimen. The validation test specimen was designed to provide a variety of stress profiles as a function of location within the specimen. A finite element analysis of the validation test specimen was performed in order to provide a reference solution for comparison to the deep hole drill experimental results. Results from experimental testing of the validation test specimen agree well with the finite element analysis reference solution, thereby providing further validation of the deep hole drill method to measure residual stresses.


Sign in / Sign up

Export Citation Format

Share Document