scholarly journals Optimization of lapping process parameters of CP-Ti based on PSO with mutation and BPNN

Author(s):  
Kaiqiang Ye ◽  
Jianbin Wang ◽  
Hong Gao ◽  
Liu Yang ◽  
Ping Xiao
Keyword(s):  
2021 ◽  
Author(s):  
Kaiqiang Ye ◽  
Jianbin Wang ◽  
Hong Gao ◽  
Liu Yang ◽  
Ping Xiao

Abstract This work aims to improve the surface quality of commercially pure titanium (CP-Ti) with free alumina lapping fluid and establish the relationship between the main process parameters of lapping and roughness. On this basis, the optimal process parameters were searched by performing particle swarm optimization with mutation. First, free alumina lapping fluid was used to perform an L9(33) orthogonal experiment on CP-Ti to acquire data samples to train the neural network. At the same time, a BP neural network was created to fit the nonlinear functional relation among the lapping pressure P, spindle speed n, slurry flow Q and roughness Ra. Then, the range of the node numbers in the hidden layer of the neural network was determined by empirical formulas and the Kolmogorov theorem. On this basis, particle swarm optimization with mutation was used to search for the optimal process parameter configurations for lapping CP-Ti. The optimal process parameter configurations were used in the neural network to calculate the prediction value. Finally, the accuracy of the prediction was verified experimentally. The optimum process parameter configurations found by particle swarm optimization were as follows: the lapping pressure was 5 kPa, spindle speed was 60 r·min− 1 and slurry flow was 50 ml·min− 1. Then, the configurations were applied to a neural network to simulate prediction: the roughness was 0.1127 µm. The roughness obtained by experiments was 0.1134 µm. The error was 0.62%, which indicates that the well-trained neural network can achieve a good prediction when experimental data are missing. Applying the particle swarm optimization (PSO) algorithm with mutation to a neural network will obtain the optimal process parameter configurations, which can effectively improve the surface quality of CP-Ti lapped with free abrasive.


2014 ◽  
Vol 794-796 ◽  
pp. 345-350 ◽  
Author(s):  
Frank Balle ◽  
Jens Magin

In this paper selected results about process control and stability during ultrasonic torsion welding of aluminium to titanium sheets are discussed. The process parameters welding force, welding energy and oscillation amplitude were optimized for Al4N/cp-Ti-joints and AA7075/TiAl6V4-joints using modern statistical test methods. The hybrid welds are evaluated and compared based on their mechanical properties. Furthermore thermal characteristics are determined with high resolution during the welding process by thermometry. Central aspects of the current research project are detailed microscopy of the hybrid interface as well as fracture surface analysis to understand the interfacial formation. Relationships between process parameters, joint strength and the related microstructure should be understood.


2003 ◽  
Vol 771 ◽  
Author(s):  
Amir Fardad ◽  
Wei Liang ◽  
Yadong Zhang ◽  
Bryson Case ◽  
Shibin Jiang ◽  
...  

AbstractFluorinated and photo-imageable precursors are synthesized through a Barbier-Grignard reaction for 1550-nm window. The precursors are used for the sol-gel process of integrated optic components for silica-on-silicon technology. Material compositions and process parameters are optimized to achieve internal absorptions >0.1 dB/cm and propagation losses of about 0.5 dB/cm at 1550 nm. Compact 1×16 Beam splitters are designed and fabricated which exhibit >0.3 dB power uniformity, >0.1 dB PDL and 1.5 dB coupling loss. By hybrid integration of the passive splitters and in-house fiber amplifiers, amplifying splitters are demonstrated at various signal intensities.


Sign in / Sign up

Export Citation Format

Share Document