scholarly journals Design and validation of integrated clamping interfaces for post-processing and robotic handling in additive manufacturing

Author(s):  
Julian Ferchow ◽  
Dominik Kälin ◽  
Gokula Englberger ◽  
Marcel Schlüssel ◽  
Christoph Klahn ◽  
...  

AbstractAdditive manufacturing (AM), particularly laser-based powder bed fusion of metals (LPBF), enables the fabrication of complex and customized metallic parts. However, 20–40% of the total manufacturing costs are usually attributed to post-processing steps. To reduce the costs of extensive post-processing, the process chain for AM parts has to be automated. Accordingly, robotic gripping and handling processes, as well as an efficient clamping for subtractive machining of AM parts, are key challenges. This study introduces and validates integrated bolts acting as a handling and clamping interface of AM parts. The bolts are integrated into the part design and manufactured in the same LPBF process. The bolts can be easily removed after the machining process using a wrench. This feasibility study investigates different bolt elements. The experiments and simulations conducted in the study show that a force of 250 N resulted in a maximum displacement of 12.5 µm. The milling results of the LPBF parts reveal a maximum roughness value, Ra, of 1.42 µm, which is comparable to that of a standard clamping system. After the bolt removal, a maximum residual height of 0.067 mm remains. Two case studies are conducted to analyze the form deviation, the effect of bolts on build time, and material volume and to demonstrate the application of the bolts. Thus, the major contribution of this study is the design and the validation of standardized interfaces for robotic handling and clamping of complex AM parts. The novelties are a simple and clean interface removal, less material consumption, less support structure required, and finally an achievement of a five-side tool accessibility by combining the interfaces with a three-jaw chuck.

2021 ◽  
Author(s):  
Julian Ferchow ◽  
Dominik Kälin ◽  
Gokula Englberger ◽  
Marcel Schlüssel ◽  
Christoph Klahn ◽  
...  

Abstract Additive manufacturing (AM), particularly laser-based powder bed fusion of metals (LPBF), enables the fabrication of complex and customized metallic parts. However, 20–40% of the total manufacturing costs are usually attributed to post-processing steps. To reduce the costs of extensive post-processing, the process chain for AM parts has to be automated. Accordingly, robotic gripping and handling processes, as well as an efficient clamping for subtractive machining of AM parts, are key challenges. This study introduces and validates integrated bolts acting as a handling and clamping interface of AM parts. The bolts are integrated into the part design and manufactured in the same LPBF process. The bolts can be easily removed after the machining process using a wrench. This feasibility study investigates different bolt elements. The experiments and simulations conducted in the study show that a force of 250 N resulted in a maximum displacement of 12.5 µm. The milling results of the LPBF parts reveal a maximum roughness value, Ra, of 1.42 µm, which is comparable to that of a standard clamping system. After the bolt removal, a maximum residual height of 0.067 mm remains. Two case studies are conducted to analyze the form deviation, the effect of bolts on build time and material volume and to demonstrate the application of the bolts. Thus, the major contribution of this study is the design and the validation of standardized interfaces for robotic handling and clamping of complex AM parts. The novelties are a simple and clean interface removal, less material consumption, less support structure required and finally an achievement of a five-side tool accessibility by combining the interfaces with a three-jaw chuck.


Author(s):  
Xinyi Xiao ◽  
Sanjay Joshi

Abstract Hybrid Manufacturing (HM) combining Additive Manufacturing (AM) and subtractive machining (SM) technologies have recently been introduced and have the potential to address the shortcomings of AM, such as the poor surface finish and requires post-processing of the support structures. One such example of an HM machine is the DMG Mori Lasertec 65. These 5-axis HM machines allow for rapid deposition of material during additive manufacturing and address the issues of feature resolution, surface finish, and tolerances by subtractive machining. Additionally, these processes allow for the creation of complex geometries not possible with standard 5-axis machining. Process planning for HM is a reasonably complex manual task and could benefit from automation. Critical steps in process planning are the decomposition of the part into additive and subtractive features, sequencing all features and assigning the tool-paths for these features. This paper presents algorithms for decomposing the part and sequencing the additive and subtractive features in an automated manner, paving the way for a fully automated system for HM. Examples of a wide range of parts demonstrating the capability of the algorithm are presented.


Author(s):  
Amaia Jiménez ◽  
Prveen Bidare ◽  
Hany Hassanin ◽  
Faris Tarlochan ◽  
Stefan Dimov ◽  
...  

AbstractRecent advances in additive manufacturing (AM) have attracted significant industrial interest. Initially, AM was mainly associated with the fabrication of prototypes, but the AM advances together with the broadening range of available materials, especially for producing metallic parts, have broaden the application areas and now the technology can be used for manufacturing functional parts, too. Especially, the AM technologies enable the creation of complex and topologically optimised geometries with internal cavities that were impossible to produce with traditional manufacturing processes. However, the tight geometrical tolerances along with the strict surface integrity requirements in aerospace, biomedical and automotive industries are not achievable in most cases with standalone AM technologies. Therefore, AM parts need extensive post-processing to ensure that their surface and dimensional requirements together with their respective mechanical properties are met. In this context, it is not surprising that the integration of AM with post-processing technologies into single and multi set-up processing solutions, commonly referred to as hybrid AM, has emerged as a very attractive proposition for industry while attracting a significant R&D interest. This paper reviews the current research and technology advances associated with the hybrid AM solutions. The special focus is on hybrid AM solutions that combine the capabilities of laser-based AM for processing powders with the necessary post-process technologies for producing metal parts with required accuracy, surface integrity and material properties. Commercially available hybrid AM systems that integrate laser-based AM with post-processing technologies are also reviewed together with their key application areas. Finally, the main challenges and open issues in broadening the industrial use of hybrid AM solutions are discussed.


MRS Advances ◽  
2017 ◽  
Vol 2 (24) ◽  
pp. 1315-1321 ◽  
Author(s):  
Daniela Espinosa-Hoyos ◽  
Huifeng Du ◽  
Nicholas X. Fang ◽  
Krystyn J. Van Vliet

ABSTRACTMaterials processing and additive manufacturing afford exciting opportunities in biomedical research, including the study of cell-material interactions. However, some of the most efficient materials for microfabrication are not wholly suitable for biological applications, require extensive post-processing or exhibit high mechanical stiffness that limits the range of applications. Conversely, materials exhibiting high cytocompatibility and low stiffness require long processing times with typically decreased spatial resolution of features. Here, we investigated the use of hexanediol diacrylate (HDDA), a classic and efficient polymer for stereolithography, for oligodendrocyte progenitor cell (OPC) culture. We developed composite HDDA-polyethylene glycol acrylate hydrogels that exhibited high biocompatibility, mechanical stiffness in the range of muscle tissue, and high printing efficiency at ∼5 μm resolution.


Author(s):  
Michael Machado ◽  
Raul Fangueiro ◽  
Daniel Barros ◽  
Luís Nobre ◽  
João Bessa ◽  
...  

Abstract With the recent advances in the additive manufacturing (AM) production technologies, AM is becoming more common in today’s industry, nowadays is a normal practice to use this solution either to test a new prototype or to manufacture a functional product. The increase application is mainly due to significant developments in the production solutions of the AM. These recent developments are resulting in an increase search for new and more efficient production solutions. This search is always focused in producing more efficiently, with a greater variety of materials and produce part with better quality and proprieties. From an industrial point of view, one of the types of additive manufacturing that is increasing the percentage of use is the selective laser sintering (SLS) technologies. Although this process was first used in the mid-80’s, it has shown great developments in the recent years. This evolution of the process allowed it to become a solid solution even if it is highly time consuming, especially when compared with other types of addictive manufacturing. From the several aspects that make the SLS a robust solution is the fact that it offers a consistent solution to produce high complex part with good mechanical properties, and also the ability to use many core materials, from polymers, metal alloy, ceramics or even composites materials. Due to the fact that the production of part using SLS technologies takes a long time, shows the relevance to study the entire process in order to quantify the time spent in each stage a very important step. This study can be conducted with two major goals, in one hand to be able to predict the build time needed to complete a predetermined task, and in other hand, to improve the overall efficiency of the process based on the knowledge acquired in the previous analysis. These two aspects are important because they allow the machine operator to choose the production plan more carefully and also to know all the parameters of the process to make it more efficient. In this paper will be presented a survey of the major stages of a SLS process in order to quantify the time consumed in each one of the stages, and if possible, determine solution to reduce the time spent. To better understand the topic the paper will be divided according to the proprieties and time consumed in each of the elements of the process. In other words, it will be divided accordingly to a machine, laser and material point of view. Furthermore, this paper will be focused in the SLS process and the productions based in a polymeric powder, therefore also containing aspects related to the power source used.


2018 ◽  
Vol 24 ◽  
pp. 67-75 ◽  
Author(s):  
Lloyd Hackel ◽  
Jon R. Rankin ◽  
Alexander Rubenchik ◽  
Wayne E. King ◽  
Manyalibo Matthews

Sign in / Sign up

Export Citation Format

Share Document