An Effective Global Gouge Detection in Tool-Path Planning for Freeform Surface Machining

2001 ◽  
Vol 18 (7) ◽  
pp. 461-473
Author(s):  
L. Zhou ◽  
Y.-J. Lin
2010 ◽  
Vol 447-448 ◽  
pp. 321-325
Author(s):  
Jiang Zhu ◽  
Keisuke Nomura ◽  
Tomohisa Tanaka ◽  
Yoshio Saito

With the rapid development of CG technology and 3D scanning technology, it is easy to design the freeform surface more complexly, but it also makes it difficult to machine such complex freeform surface rapidly and accurately. In this paper, a tool path planning assist system for freeform surface machining is presented. Differing from general CAM systems, in this developed tool path planning assist system, the tool path is generated based on the features of the CAD model, and focus on the applicability of material removal process. New machining strategies for both rough cutting process and finish cutting process are presented. With the assisting of this developed system, freeform surface could be machined efficiently and accurately.


Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


2016 ◽  
Vol 693 ◽  
pp. 1143-1147
Author(s):  
Jia Ying Han ◽  
Lei Bin Li ◽  
Jin Hai Huo

To increase the utility rate of machine, the sculptured surface machining method was researched to use in the spiral bevel gear tooth surface manufacturing with the industrial CNC milling machine. The three dimentional tooth surface points are required to design tool path planning in the SSM method. For obtaining the arbitrary point of tooth surface, the uniform bicubic B-spline tooth surface was reconstructed by cutting simulation and fitting programs. The discrepancies between fitted and theoretical points of tooth surface were provided with CAD/CAM platform. According to the results, the tool path planning of sculptured tooth surface machining can be designed and realized further.


Author(s):  
Fusheng Liang ◽  
Ji Zhao ◽  
Shijun Ji ◽  
Lei Lu

Deterministic polishing as the final step of freeform surface machining can acquire preferable form accuracy. In this article, a deterministic polishing model based on iterative intersection tool path is presented to meet the requirement of high-form accuracy in freeform surface. In the polishing process, on-machine measurement and point set registration method are adopted for installation error extraction and form error calculation. The iterative polishing can be finished without discharging of workpiece by on-machine measurement strategy, which will reduce the processing time and improve the machining efficiency. In addition, a boundary extension method is employed to diminish the surface edge collapse generated by edge effect. Finally, the polishing experiment of freeform optical surface in an off-axial three-mirror anastigmat imaging system is conducted to verify the effectiveness of the proposed model.


2014 ◽  
Vol 625 ◽  
pp. 372-377 ◽  
Author(s):  
Jiang Zhu ◽  
Akimitsu Hozumi ◽  
Tomohisa Tanaka ◽  
Yoshio Saito

Along with the rapid development of CAD/CAM system, the smooth surfaces are widely used in industry design. Especially NURBS surface attracts rising attentions because NURBS can describe flat surface, freeform surface and so on. Currently a lot of tool path generation patterns are proposed for milling process of freeform surface. Nevertheless there are still some problems on generating efficient tool path for freeform surface under the requested surface finish roughness. In this research, in order to resolve these problems, NURBS surface is divided into some patches and the tool path is generated on each patch. This paper proposes a surface divide method and makes a comparison between this method and undivided method. As a result, it is found that dividing the surface is helpful for the making shorter tool path and increase the machining efficiency.


Sign in / Sign up

Export Citation Format

Share Document