A New NC Machine Tool Controller for Step-by-Step Milling

2001 ◽  
Vol 18 (6) ◽  
pp. 399-403 ◽  
Author(s):  
J. Balic
2007 ◽  
Vol 10-12 ◽  
pp. 806-811
Author(s):  
Tong Zhao ◽  
P.Q. Ye ◽  
H. Zhang ◽  
X.K. Wang

In this paper the model of special metal cutting NC machine Tool is presented, which consists of a base module, an overall control module, particular functional modules as well as a relation module. Each module involved in aforementioned model will be composed by software, hardware and mechanical parts, so as to combine the convergence of the ideas of modularization and mechanical-electrical integration into current understanding of special NC machine tool through the proposed model. Specially, the relation module is introduced to deal with the linking among all the other modules. The presented model aims to broaden the perspective of machine designers intending to increase the efficiency in machine design. By giving the so-called function unit model a novel modeling approach is delivered to carry out control research of special metal cutting NC machine, which is followed by the formalization description method presented as a possible abstraction methodology towards the efficient description and identification of special metal cutting NC machine tool.


2014 ◽  
Vol 590 ◽  
pp. 121-125 ◽  
Author(s):  
Wen Kai Jie ◽  
Jian Chen ◽  
Deng Sheng Zheng ◽  
Gui Cheng Wang

The coupling characteristic of the tool-holder/spindle interface in high speed NC machine has significant influence on machine tool accuracy and process stability. With the example of HSK-E63, based on nonlinear finite element method (FEM), the coupling characteristic of the tool-holder/spindle interface under high rotational speed was investigated, the influence of interference, clamping force and rotational speed on the contact stress and the sectional area of clearance were discussed in detail. The results can be used as theoretical consideration to design and optimize the high speed tool-holder/spindle interface.


Author(s):  
Wang Youjun ◽  
Zhang Dinghua ◽  
Yao Kai ◽  
Hou Zhongming ◽  
Wu Fujia

2009 ◽  
Vol 16-19 ◽  
pp. 410-414 ◽  
Author(s):  
Chang Long Zhao ◽  
Yi Qiang Wang ◽  
Xue Song Guan

In this paper, a hybrid method of correlation analysis based on the gray theory and the least squares support vector machine is proposed to model the thermal error of spindle of NC machine tool and predict the thermal error. The gray correlation analysis is used to optimize the measuring points of spindle. The optimum measuring points and the measured thermal error of spindle are regarded as the data to be trained to build the thermal error prediction model based on the least squares support vector machine (LS-SVM). The results show that the thermal error prediction model based on LS-SVM of NC machine tool has advantages of high precision and good generalization performance. The prediction model can be used in real-time compensation of NC machine tool and can prove the process precision and reduce cost.


Sign in / Sign up

Export Citation Format

Share Document