A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions

Metrika ◽  
2021 ◽  
Author(s):  
Rocío Maehara ◽  
Heleno Bolfarine ◽  
Filidor Vilca ◽  
N. Balakrishnan
2019 ◽  
Vol 09 (04) ◽  
pp. 2150001
Author(s):  
Yong He ◽  
Hao Sun ◽  
Jiadong Ji ◽  
Xinsheng Zhang

In this paper, we innovatively propose an extremely flexible semi-parametric regression model called Multi-response Trans-Elliptical Regression (MTER) Model, which can capture the heavy-tail characteristic and tail dependence of both responses and covariates. We investigate the feature screening procedure for the MTER model, in which Kendall’ tau-based canonical correlation estimators are proposed to characterize the correlation between each transformed predictor and the multivariate transformed responses. The main idea is to substitute the classical canonical correlation ranking index in [X. B. Kong, Z. Liu, Y. Yao and W. Zhou, Sure screening by ranking the canonical correlations, TEST 26 (2017) 1–25] by a carefully constructed non-parametric version. The sure screening property and ranking consistency property are established for the proposed procedure. Simulation results show that the proposed method is much more powerful to distinguish the informative features from the unimportant ones than some state-of-the-art competitors, especially for heavy-tailed distributions and high-dimensional response. At last, a real data example is given to illustrate the effectiveness of the proposed procedure.


2020 ◽  
Vol 14 (2) ◽  
pp. 4421-4456
Author(s):  
Aboubacrène Ag Ahmad ◽  
El Hadji Deme ◽  
Aliou Diop ◽  
Stéphane Girard ◽  
Antoine Usseglio-Carleve

Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Phenomena, systems, and processes are rarely purely deterministic, but contain stochastic,probabilistic, or random components. For that reason, a probabilistic descriptionof most phenomena is necessary. Probability theory provides us with the tools for thistask. Here, we provide a crash course on the most important notions of probabilityand random processes, such as odds, probability, expectation, variance, and so on. Wedescribe the most elementary stochastic event—the trial—and develop the notion of urnmodels. We discuss basic facts about random variables and the elementary operationsthat can be performed on them. We learn how to compose simple stochastic processesfrom elementary stochastic events, and discuss random processes as temporal sequencesof trials, such as Bernoulli and Markov processes. We touch upon the basic logic ofBayesian reasoning. We discuss a number of classical distribution functions, includingpower laws and other fat- or heavy-tailed distributions.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Mei Ling Huang ◽  
Xiang Raney-Yan

The high quantile estimation of heavy tailed distributions has many important applications. There are theoretical difficulties in studying heavy tailed distributions since they often have infinite moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean. The new estimator has good asymptotic properties as well as it provides a computational algorithm for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations. Finally, the applications on two real-world examples are provided.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 56
Author(s):  
Haoyu Niu ◽  
Jiamin Wei ◽  
YangQuan Chen

Stochastic Configuration Network (SCN) has a powerful capability for regression and classification analysis. Traditionally, it is quite challenging to correctly determine an appropriate architecture for a neural network so that the trained model can achieve excellent performance for both learning and generalization. Compared with the known randomized learning algorithms for single hidden layer feed-forward neural networks, such as Randomized Radial Basis Function (RBF) Networks and Random Vector Functional-link (RVFL), the SCN randomly assigns the input weights and biases of the hidden nodes in a supervisory mechanism. Since the parameters in the hidden layers are randomly generated in uniform distribution, hypothetically, there is optimal randomness. Heavy-tailed distribution has shown optimal randomness in an unknown environment for finding some targets. Therefore, in this research, the authors used heavy-tailed distributions to randomly initialize weights and biases to see if the new SCN models can achieve better performance than the original SCN. Heavy-tailed distributions, such as Lévy distribution, Cauchy distribution, and Weibull distribution, have been used. Since some mixed distributions show heavy-tailed properties, the mixed Gaussian and Laplace distributions were also studied in this research work. Experimental results showed improved performance for SCN with heavy-tailed distributions. For the regression model, SCN-Lévy, SCN-Mixture, SCN-Cauchy, and SCN-Weibull used less hidden nodes to achieve similar performance with SCN. For the classification model, SCN-Mixture, SCN-Lévy, and SCN-Cauchy have higher test accuracy of 91.5%, 91.7% and 92.4%, respectively. Both are higher than the test accuracy of the original SCN.


Sign in / Sign up

Export Citation Format

Share Document