Orbit determination of the SELENE satellites using multi-satellite data types and evaluation of SELENE gravity field models

2011 ◽  
Vol 85 (8) ◽  
pp. 487-504 ◽  
Author(s):  
S. Goossens ◽  
K. Matsumoto ◽  
D. D. Rowlands ◽  
F. G. Lemoine ◽  
H. Noda ◽  
...  
2021 ◽  
Vol 13 (20) ◽  
pp. 4119
Author(s):  
Nannan Guo ◽  
Xuhua Zhou ◽  
Kai Li

The quality of Gravity Recovery and Climate Experiment (GRACE) observation is the prerequisite for obtaining the high-precision GRACE temporal gravity field model. To study the influence of new-generation GRACE Level-1B Release 03 (RL03) data and the new atmosphere and ocean de-aliasing (AOD1B) products on recovering temporal gravity field models and precise orbit determination (POD) solutions, we combined the global positioning system and K-band ranging-rate (KBRR) observations of GRACE satellites to estimate the effect of different data types on these solutions. The POD and monthly gravity field solutions are obtained from 2005 to 2010 by SHORDE software developed by the Shanghai Astronomical Observatory. The post-fit residuals of the KBRR data were decreased by approximately 10%, the precision of three-direction positions of the GRACE POD was improved by approximately 5%, and the signal-to-noise ratio of the monthly gravity field model was enhanced. The improvements in the new release of monthly gravity field model and POD solutions can be attributed to the enhanced Level-1B KBRR data and the AOD1B model. These improvements were primarily due to the enhanced of KBRR data; the effect of the AOD1B model was not significant. The results also showed that KBRR data slightly improve the satellite orbit precision, and obviously enhance the precision of the gravity field model.


Author(s):  
Annette Eicker ◽  
Torsten Mayer-Gürr ◽  
Karl-Heinz Ilk ◽  
Enrico Kurtenbach

1979 ◽  
Vol 82 ◽  
pp. 231-238 ◽  
Author(s):  
David E. Smith ◽  
Ronald Kolenkiewicz ◽  
Peter J. Dunn ◽  
Mark Torrence

Laser tracking of the Lageos spacecraft has been used to derive the position of the Earth's pole of rotation at 5-day intervals during October, November and December 1976. The estimated precision of the results is 0.01 to 0.02 arcseconds in both x and y components, although the formal uncertainty is an order of magnitude better, and there is general agreement with the Bureau International de l'Heure smoothed pole path to about 0.02 arcseconds. Present orbit determination capability of Lageos is limited to about 25 cm rms fit to data over periods of 5 days and about 50 cm over 50 days. The present major sources of error in the perturbations of Lageos are Earth and ocean tides followed by the Earth's gravity field, and solar and Earth reflected radiation pressure. Ultimate accuracy for polar motion and Earth rotation from Lageos after improved modeling of the perturbing forces appears to be of order ± 5 cm for polar motion over a period of about 1 day and about ± 0.2 to ± 0.3 milliseconds in U.T. for periods up to 2 or 3 months.


2012 ◽  
Vol 47 (2) ◽  
pp. 47-65 ◽  
Author(s):  
K. Sośnica ◽  
D. Thaller ◽  
A. Jäggi ◽  
R. Dach ◽  
G. Beutler

Sensitivity of Lageos Orbits to Global Gravity Field ModelsPrecise orbit determination is an essential task when analyzing SLR data. The quality of the satellite orbits strongly depends on the models used for dynamic orbit determination. The global gravity field model used is one of the crucial elements, which has a significant influence on the satellite orbit and its accuracy. We study the impact of different gravity field models on the determination of the LAGEOS-1 and -2 orbits for data of the year 2008. Eleven gravity field models are compared, namely JGM3 and EGM96 based mainly on SLR, terrestrial and altimetry data, AIUB-CHAMP03S based uniquely on GPS-measurements made by CHAMP, AIUB-GRACE03S, ITG-GRACE2010 based on GRACE data, and the combined gravity field models based on different measurement techniques, such as EGM2008, EIGEN-GL04C, EIGEN51C, GOCO02S, GO-CONS-2-DIR-R2, AIUB-SST. The gravity field models are validated using the RMS of the observation residuals of 7-day LAGEOS solutions. The study reveals that GRACE-based models have the smallest RMS values (i.e., about 7.15 mm), despite the fact that no SLR data were used to determine them. The coefficient C20is not always well estimated in GRACE-only models. There is a significant improvement of the gravity field models based on CHAMP, GRACE and GOCE w.r.t. models of the pre-CHAMP era. The LAGEOS orbits are particularly sensitive to the long wavelength part of the gravity fields. Differences of the estimated orbits due to different gravity field models are noticeable up to degree and order of about 30. The RMS of residuals improves from about 40 mm for degree 8, to about 7 mm for the solutions up to degrees 14 and higher. The quality of the predicted orbits is studied, as well.


2021 ◽  
Vol 56 (1) ◽  
pp. 1-9
Author(s):  
Janusz B. Zieliński ◽  
Vladimir V. Pashkevich

Abstract Discussing the problem of the external gravitational potential of the rotating Earth, we have to consider the fundamental postulate of the finite speed of the propagation of gravitation. This can be done using the expressions for the gravitational aberration compared to the Liénard–Wiechert solution of the retarded potentials. The term gravitational counter-aberration or co-aberration is introduced to describe the pattern of the propagation of the gravitational signal emitted by the rotating Earth. It is proved that in the first approximation, the classic theory of the aberration of light can be applied to calculate this effect. Some effects of the gravitational aberration on the external gravity field of the rotating Earth may influence the orbit determination of the Earth artificial satellites.


Sign in / Sign up

Export Citation Format

Share Document