Determination of Polar Motion and Earth Rotation from Laser Tracking of Satellites

1979 ◽  
Vol 82 ◽  
pp. 231-238 ◽  
Author(s):  
David E. Smith ◽  
Ronald Kolenkiewicz ◽  
Peter J. Dunn ◽  
Mark Torrence

Laser tracking of the Lageos spacecraft has been used to derive the position of the Earth's pole of rotation at 5-day intervals during October, November and December 1976. The estimated precision of the results is 0.01 to 0.02 arcseconds in both x and y components, although the formal uncertainty is an order of magnitude better, and there is general agreement with the Bureau International de l'Heure smoothed pole path to about 0.02 arcseconds. Present orbit determination capability of Lageos is limited to about 25 cm rms fit to data over periods of 5 days and about 50 cm over 50 days. The present major sources of error in the perturbations of Lageos are Earth and ocean tides followed by the Earth's gravity field, and solar and Earth reflected radiation pressure. Ultimate accuracy for polar motion and Earth rotation from Lageos after improved modeling of the perturbing forces appears to be of order ± 5 cm for polar motion over a period of about 1 day and about ± 0.2 to ± 0.3 milliseconds in U.T. for periods up to 2 or 3 months.

1979 ◽  
pp. 231-238 ◽  
Author(s):  
David E. Smith ◽  
Ronald Kolenkiewicz ◽  
Peter J. Dunn ◽  
Mark Torrence

2011 ◽  
Vol 85 (8) ◽  
pp. 487-504 ◽  
Author(s):  
S. Goossens ◽  
K. Matsumoto ◽  
D. D. Rowlands ◽  
F. G. Lemoine ◽  
H. Noda ◽  
...  

1988 ◽  
Vol 129 ◽  
pp. 417-420
Author(s):  
Shifang Luo ◽  
Dawei Zheng

By using the observations of IRIS network, the stability of determinang ERP with VLBI is studied. It is concluded that the uncertainties from initial values of ERP, the errors of other parameters are at the same level as the formal errors in determination of ERP. The geometric effect on determination of ERP is important and appears as systematic errors. Geometric uncertainty on polar motion is greater than that on UT1. and specially much worse for the continenal network. The stability of determining ERP with VLBI can be improved either by increasing new stations at reasonable location in a VLBI network or by increasing new networks.


2017 ◽  
Vol 50 (2) ◽  
pp. 1091
Author(s):  
A. Marinou ◽  
D. Anastasiou ◽  
X. Papanikolaou ◽  
D. Paradissis ◽  
V. Zacharis

Dionysos Satellite Observatory and Higher Geodesy Laboratory have been in operation since the 60s and their main objective is to fulfill academic and research needs, determined through the ongoing scientific and technological advance in the field of geodesy. They are involved in all scientific domains related to the determination of earth’s size and figure, as well as its temporal variations. Their field of expertise is Satellite Geodesy, (spanning a wide range of applications like reference systems, tectonic geodesy, etc.), as well as the study of the geoid and earth's gravity field.


2005 ◽  
Vol 76 (12) ◽  
pp. 124501 ◽  
Author(s):  
Shigeo Nagano ◽  
Mizuhiko Hosokawa ◽  
Hiroo Kunimori ◽  
Taizoh Yoshino ◽  
Seiji Kawamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document