scholarly journals Best integer equivariant estimation for elliptically contoured distributions

2020 ◽  
Vol 94 (9) ◽  
Author(s):  
P. J. G. Teunissen

Abstract This contribution extends the theory of integer equivariant estimation (Teunissen in J Geodesy 77:402–410, 2003) by developing the principle of best integer equivariant (BIE) estimation for the class of elliptically contoured distributions. The presented theory provides new minimum mean squared error solutions to the problem of GNSS carrier-phase ambiguity resolution for a wide range of distributions. The associated BIE estimators are universally optimal in the sense that they have an accuracy which is never poorer than that of any integer estimator and any linear unbiased estimator. Next to the BIE estimator for the multivariate normal distribution, special attention is given to the BIE estimators for the contaminated normal and the multivariate t-distribution, both of which have heavier tails than the normal. Their computational formulae are presented and discussed in relation to that of the normal distribution.

Author(s):  
James Weimer ◽  
Nicola Bezzo ◽  
Miroslav Pajic ◽  
Oleg Sokolsky ◽  
Insup Lee

Author(s):  
Santi Koonkarnkhai ◽  
Phongsak Keeratiwintakorn ◽  
Piya Kovintavewat

In bit-patterned media recording (BPMR) channels, the inter-track interference (ITI) is extremely severe at ultra high areal densities, which significantly degrades the system performance. The partial-response maximum-likelihood (PRML) technique that uses an one-dimensional (1D) partial response target might not be able to cope with this severe ITI, especially in the presence of media noise and track mis-registration (TMR). This paper describes the target and equalizer design for highdensity BPMR channels. Specifically, we proposes a two-dimensional (2D) cross-track asymmetric target, based on a minimum mean-squared error (MMSE) approach, to combat media noise and TMR. Results indicate that the proposed 2D target performs better than the previously proposed 2D targets, especially when media noise and TMR is severe.


2014 ◽  
Vol 2014 (2) ◽  
pp. 49-50 ◽  
Author(s):  
Sara Teodoro ◽  
Adão Silva ◽  
Rui Dinis ◽  
Daniel Castanheira ◽  
Atílio Gameiro

1970 ◽  
Vol 13 (3) ◽  
pp. 391-393 ◽  
Author(s):  
B. K. Kale

Lehmann [1] in his lecture notes on estimation shows that for estimating the unknown mean of a normal distribution, N(θ, 1), the usual estimator is neither minimax nor admissible if it is known that θ belongs to a finite closed interval [a, b] and the loss function is squared error. It is shown that , the maximum likelihood estimator (MLE) of θ, has uniformly smaller mean squared error (MSE) than that of . It is natural to ask the question whether the MLE of θ in N(θ, 1) is admissible or not if it is known that θ ∊ [a, b]. The answer turns out to be negative and the purpose of this note is to present this result in a slightly generalized form.


2009 ◽  
Vol 2009 ◽  
pp. 1-21
Author(s):  
Sanjay L. Badjate ◽  
Sanjay V. Dudul

Multistep ahead prediction of a chaotic time series is a difficult task that has attracted increasing interest in the recent years. The interest in this work is the development of nonlinear neural network models for the purpose of building multistep chaotic time series prediction. In the literature there is a wide range of different approaches but their success depends on the predicting performance of the individual methods. Also the most popular neural models are based on the statistical and traditional feed forward neural networks. But it is seen that this kind of neural model may present some disadvantages when long-term prediction is required. In this paper focused time-lagged recurrent neural network (FTLRNN) model with gamma memory is developed for different prediction horizons. It is observed that this predictor performs remarkably well for short-term predictions as well as medium-term predictions. For coupled partial differential equations generated chaotic time series such as Mackey Glass and Duffing, FTLRNN-based predictor performs consistently well for different depths of predictions ranging from short term to long term, with only slight deterioration after k is increased beyond 50. For real-world highly complex and nonstationary time series like Sunspots and Laser, though the proposed predictor does perform reasonably for short term and medium-term predictions, its prediction ability drops for long term ahead prediction. However, still this is the best possible prediction results considering the facts that these are nonstationary time series. As a matter of fact, no other NN configuration can match the performance of FTLRNN model. The authors experimented the performance of this FTLRNN model on predicting the dynamic behavior of typical Chaotic Mackey-Glass time series, Duffing time series, and two real-time chaotic time series such as monthly sunspots and laser. Static multi layer perceptron (MLP) model is also attempted and compared against the proposed model on the performance measures like mean squared error (MSE), Normalized mean squared error (NMSE), and Correlation Coefficient (r). The standard back-propagation algorithm with momentum term has been used for both the models.


Sign in / Sign up

Export Citation Format

Share Document