cross track
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 101)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Vol 14 (1) ◽  
pp. 218
Author(s):  
Bin Li ◽  
Guangpeng Fan ◽  
Tianzhong Zhao ◽  
Zhuo Deng ◽  
Yonghui Yu

The new generation of satellite-borne laser radar Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data has been successfully used for ground information acquisition. However, when dealing with complex terrain and dense vegetation cover, the accuracy of the extracted understory Digital Terrain Model (DTM) is limited. Therefore, this paper proposes a photon correction data processing method based on ICESat-2 to improve the DTM inversion accuracy in complex terrain and high forest coverage areas. The correction value is first extracted based on the ALOS PALSAR DEM reference data to correct the cross-track photon data of ICESat-2. The slope filter threshold is then selected from the reference data, and the extracted possible ground photons are slope filtered to obtain accurate ground photons. Finally, the impacts of cross-track photon and slope filtering on fine ground extraction from the ICESat-2 data are discussed. The results show that the proposed photon correction and slope filtering algorithms help to improve the extraction accuracy of forest DTM in complex terrain areas. Compared with the forest DTM extracted without the photon correction and slope filtering methods, the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) are reduced by 51.90~57.82% and 49.37~53.55%, respectively. To the best of our knowledge, this is the first study demonstrating that photon correction can improve the terrain inversion ability of ICESat-2, while providing a novel method for ground extraction based on ICESat-2 data. It provides a theoretical basis for the accurate inversion of canopy parameters for ICESat-2.


Author(s):  
Ram C. Sharma ◽  
Hidetake Hirayama ◽  
Keitarou Hara

Advanced Land Observing Satellite 3 (ALOS-3) is capable of observing global land areas with wide swath (4000 km along-track direction and 70 km cross-track direction) at high spatial resolution (panchromatic: 0.8m, multispectral: 3.2m). Maintenance and updating of Land Cover and Vegetation (LCV) information at national level is one of the major goals of the ALOS-3 mission. This paper presents the potential of simulated ALOS-3 images for the classification and mapping of LCV types. We simulated WorldView-3 images according to the configuration of the ALOS-3 satellite sensor and the ALOS-3 simulated (ALOS-3S) images were utilized for the classification and mapping of LCV types in two cool temperate ecosystems. This research dealt with classification and mapping of 17 classes in the Hakkoda site and 25 classes in the Zao site. We employed a Gradient Boosted Decision Tree (GBDT) classifier with 10-fold cross-validation method for assessing the potential of ALOS-3S images. In the Hakkoda site, we obtained overall accuracy, 0.811 and kappa coefficient, 0.798. In the Zao site, overall accuracy and kappa coefficient were 0.725 and 0.711 respectively. Regardless of limited temporal scenes available in the research, ALOS-3S images showed high potential (at least 0.711 kappa-coefficient) for the LCV classification. The availability of more temporal scenes from ALOS-3 satellite is expected for improved classification and mapping of LCV types in the future.


GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy ◽  
Chris Rizos

AbstractDue to an increasing requirement for high accuracy orbital information for low Earth orbit (LEO) satellites, precise orbit determination (POD) of LEO satellites is a topic of growing interest. To assure the safety and reliability of the applications requiring high accuracy LEO orbits in near-real-time, integrity monitoring (IM) is an essential operation of the POD process. In this contribution, the IM strategy for LEO POD in both the kinematic and reduced-dynamic modes is investigated. The overbounding parameters of the signal-in-space range error are investigated for the GPS products provided by the International GNSS Service’s Real-Time Service and the Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis service. Benefiting from the dynamic models used and the improved model strength, the test results based on the data of the LEO satellite GRACE FO-1 show that the average-case mean protection levels (PLs) can be reduced from about 3–4 m in the kinematic mode to about 1 m in the reduced-dynamic mode in the radial, along-track and cross-track directions. The overbounding mean values of the SISRE play the dominant role in the final PLs. In the reduced-dynamic mode and average-case projection, the IM availabilities reach above 99% in the radial, along-track and cross-track directions with the alert limit (AL) set to 2 m. The values are still above 98% with the AL set to 4 m, when the duty cycle of tracking is reduced to 40%, e.g., in the case of power limits for miniature satellites such as CubeSats.


MAUSAM ◽  
2021 ◽  
Vol 48 (2) ◽  
pp. 205-212
Author(s):  
JOHNNY C. L. CHAN

ABSTRACT. This paper reviews the methods by which techniques for predicting tropical cyclone (TC) motion can be evaluated. Different error measures (forecast error, systematic error, and cross-track and along-track errors) are described in detail. Examples are then given to show how these techniques can be further evaluated by stratifying the forecasts based on factors related to the TC, including latitude, longitude, intensity change, size and past movement. Application of the Empirical-Orthogonal-Function (EOF) approach to represent the environmental flow associated with the TCs is also proposed. The magnitudes of the EOF coefficients can then be used to stratify the forecasts since these coefficients represent different types of flow fields. A complete evaluation of a forecast technique then consists of a combination of analyzing the different error measures based on both the storm- related factors and the EOF coefficients.    


Author(s):  
Haitong Xu ◽  
C Guedes Soares

An optimized path following guidance law is proposed for path-following of an underactuated surface ship. The main purpose of the proposed guidance law is to make a marine vessel travel with more energy efficiency. A combined feedback and feedforward controller is used for the heading control. The feedforward term is designed based on the well-known Nomoto model, whose parameters are estimated using least-square support vector regression. In order to achieve optimal operation of a marine vessel, a global optimization algorithm is employed to search the regularization factors, which are the trade-off between the total cross-track errors and total control energy. The simulation studies are carried out to demonstrate the performance of the proposed guidance law. The proposed method is an effective and practical guidance law and provide an optimal option for marine navigator.


2021 ◽  
Vol 13 (24) ◽  
pp. 5008
Author(s):  
Xuebo Zhang ◽  
Peixuan Yang

When the multi-receiver synthetic aperture sonar (SAS) works with a wide-bandwidth signal, the performance of the range-Doppler (R-D) algorithm is seriously affected by two approximation errors, i.e., point target reference spectrum (PTRS) error and residual quadratic coupling error. The former is generated by approximating the PTRS with the second-order term in terms of the instantaneous frequency. The latter is caused by neglecting the cross-track variance of secondary range compression (SRC). In order to improve the imaging performance in the case of wide-bandwidth signals, an improved R-D algorithm is proposed in this paper. With our method, the multi-receiver SAS data is first preprocessed based on the phase center approximation (PCA) method, and the monostatic equivalent data are obtained. Then several sub-blocks are generated in the cross-track dimension. Within each sub-block, the PTRS error and residual quadratic coupling error based on the center range of each sub-block are compensated. After this operation, all sub-blocks are coerced into a new signal, which is free of both approximation errors. Consequently, this new data is used as the input of the traditional R-D algorithm. The processing results of simulated data and real data show that the traditional R-D algorithm is just suitable for an SAS system with a narrow-bandwidth signal. The imaging performance would be seriously distorted when it is applied to an SAS system with a wide-bandwidth signal. Based on the presented method, the SAS data in both cases can be well processed. The imaging performance of the presented method is nearly identical to that of the back-projection (BP) algorithm.


2021 ◽  
Author(s):  
Lance Davis ◽  
James Clemmons ◽  
Diana Swanson ◽  
Patrick Fowler ◽  
Robert Pfaff ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (22) ◽  
pp. 4681
Author(s):  
Tzu-Pang Tseng

A hybrid ECOM (Empirical CODE Orbit Model) solar radiation pressure (SRP) model, which is termed ECOMC in this work, is proposed for global navigation satellite system (GNSS) orbit modeling. The ECOMC is mainly parameterized by both ECOM1 and ECOM2 models. The GNSS orbit mainly serves as a reference datum not only for its ranging measurement but also for the so-called precise point positioning (PPP) technique. Compared to a complex procedure of orbit determination with real tracking data, the so-called orbit fitting technique simply uses satellite positions from GNSS ephemeris as pseudo-observations to estimate the initial state vector and SRP parameters. The accuracy of the reference orbit is mainly dominated by the SRP, which is usually handled by either ECOM1 or ECOM2. However, the reference orbit derived by ECOM1 produces periodic variations on orbit differences with respect to International GNSS Service (IGS) final orbit for GPS IIR satellites. Such periodic variations are removed from a reference orbit formed using the ECOM2 model, which, however, yields large cross-track orbit errors for the IIR and IIF satellites. Such large errors are attributed to the fact that the ECOM2 intrinsically lacks 1 cycle per revolution (CPR) terms, which stabilize the estimations of the even-order CPR terms in the satellite-Sun direction when the orbit fitting is used. In comparison, a reference orbit constructed with the ECOMC model is free of both the periodic variations from the ECOM1 and the large cross-track orbit errors from the ECOM2. The above improvements from the ECOMC are associated with (1) the even CPR terms removing the periodic variations and (2) the 1 CPR terms compensating for the force mismodeling at = 90° and 270°, where the is the argument of the latitude of the satellite with respect to the Sun. The parameter correlation analysis also presents that the direct SRP estimation is sensitive to the 1 and 2 CPR terms in the ECOMC case. In addition, the root-mean-square (RMS) of orbit difference with respect to IGS orbit is improved by ~40%, ~10%, and ~50% in the radial, along-track, and cross-track directions, respectively, when the SRP model is changed from the ECOM2 to the ECOMC. The orbit accuracy is assessed through orbit overlaps at day boundaries. The accuracy improvements of the ECOMC-derived orbit over the ECOM2-derived orbit in the radial, along-track, and cross-track directions are 13.2%, 14.8%, and 42.6% for the IIF satellites and 7.4%, 7.7%, and 35.0% for the IIR satellites. The impact of the reference orbit using the three models on the PPP is assessed. The positioning accuracy derived from the ECOMC is better than that derived from the ECOM1 and ECOM2 by approximately 13% and 20%, respectively. This work may serve as a reference for forming the GNSS reference orbit using the orbit fitting technique with the ECOMC SRP model.


Author(s):  
Julieta F. Juncosa Calahorrano ◽  
Vivienne H. Payne ◽  
Susan Kulawik ◽  
Bonne Ford ◽  
Frank Flocke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document