Killer-toxin-resistant kre12 mutants of Saccharomyces cerevisiae : genetic and biochemical evidence for a secondary K1 membrane receptor

1995 ◽  
Vol 164 (6) ◽  
pp. 435-443 ◽  
Author(s):  
M. J. Schmitt ◽  
Pascal Compain
1990 ◽  
Vol 265 (28) ◽  
pp. 17274-17280
Author(s):  
M Tokunaga ◽  
A Kawamura ◽  
K Kitada ◽  
F Hishinuma

1985 ◽  
Vol 31 (3) ◽  
pp. 300-302 ◽  
Author(s):  
Gianfranco Rosini

The cross-reaction between 6 killer strains of Saccharomyces cerevisiae and 41 killer strains of Hansenula anomala var. anomala was examined. Fifteen strains of Hansenula killed one or more cultures of S. cerevisiae. None of the killer strains of H. anomala var. anomala was killed by S. cerevisiae killer strains or by killer strains of the same species. In S. cerevisiae different killer toxin and immunity systems were represented. Intraspecific killing activity was not found among the 41 strains of H. anomala var. anomala.


1987 ◽  
Vol 50 (3) ◽  
pp. 234-238 ◽  
Author(s):  
FERDINAND RADLER ◽  
MANFRED SCHMITT

The killer toxin (KT 28), a glycoprotein of Saccharomyces cerevisiae strain 28, was almost completely adsorbed by bentonite, when applied at a concentration of 1 g per liter. No significant differences were found between several types of bentonite. Killer toxin KT 28 is similarly adsorbed by intact yeast cells or by a commercial preparation of yeast cell walls that has been recommended to prevent stuck fermentations. An investigation of the cell wall fractions revealed that the toxin KT 28 was mainly adsorbed by mannan, that removed the toxin completely. The alkali-soluble and the alkali-insoluble β-1,3- and β-1,6-D-glucans lowered the toxin concentration to one tenth of the original amount. The killer toxin of the type K1 of S. cerevisiae was adsorbed much better by glucans than by mannan.


2021 ◽  
Author(s):  
Santhanasabapathy Rajasekaran ◽  
Patricia P Peterson ◽  
Zhengchang Liu ◽  
Lucy C Robinson ◽  
Stephan N Witt

Abstract We tested the ability of alpha-synuclein (α-syn) to inhibit Snx3-retromer mediated retrograde trafficking of Kex2 and Ste13 between late endosomes and the trans-Golgi (TGN) using a Saccharomyces cerevisiae model of Parkinson’s disease (PD). Kex2 and Ste13 are a conserved, membrane-bound proprotein convertase and dipeptidyl aminopeptidase, respectively, that process pro-α-factor and pro-killer toxin. Each of these proteins contains a cytosolic tail that binds to sorting nexin Snx3. Using a combination of techniques, including fluorescence microscopy, western blotting and a yeast mating assay, we found that α-syn disrupts Snx3-retromer trafficking of Kex2-GFP and GFP-Ste13 from the late endosome to the TGN, resulting in these two proteins transiting to the vacuole by default. Using three α-syn variants (A53T, A30P, and α-synΔC, which lacks residues 101–140), we further found that A53T and α-synΔC, but not A30P, reduce Snx3-retromer trafficking of Kex2-GFP, which is likely to be due to weaker binding of A30P to membranes. Degradation of Kex2 and Ste13 in the vacuole should result in the secretion of unprocessed, inactive forms of α-factor, which will reduce mating efficiency between MATa and MATα cells. We found that wild-type α-syn but not A30P significantly inhibited the secretion of α-factor. Collectively, our results support a model in which the membrane-binding ability of α-syn is necessary to disrupt Snx3-retromer retrograde recycling of these two conserved endopeptidases.


Sign in / Sign up

Export Citation Format

Share Document